计算
统计物理学
参数化(大气建模)
多尺度建模
剪切(地质)
计算机科学
钥匙(锁)
材料科学
物理
机械
算法
量子力学
辐射传输
计算机安全
计算化学
复合材料
化学
作者
Konstantinos Karapiperis,Laurent Stainier,Michael Ortiz,Joseph D. Andrade
标识
DOI:10.1016/j.jmps.2020.104239
摘要
We present a Data-Driven framework for multiscale mechanical analysis of materials. The proposed framework relies on the Data-Driven formulation in mechanics (Kirchdoerfer and Ortiz 2016), with the material data being directly extracted from lower-scale computations. Particular emphasis is placed on two key elements: the parametrization of material history, and the optimal sampling of the mechanical state space. We demonstrate an application of the framework in the prediction of the behavior of sand, a prototypical complex history-dependent material. In particular, the model is able to predict the material response under complex nonmonotonic loading paths, and compares well against plane strain and triaxial compression shear banding experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI