计算机科学
协议(科学)
物联网
计算机网络
密码协议
计算机安全
信息隐私
密码学
医学
病理
替代医学
作者
Xi Luo,Lihua Yin,Chao Li,Chonghua Wang,Fuyang Fang,Chunsheng Zhu,Zhihong Tian
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2020-03-12
卷期号:8: 67192-67204
被引量:22
标识
DOI:10.1109/access.2020.2978525
摘要
While Internet-of-Things (IoT) significantly facilitates the convenience of people's daily life, the lack of security practice raises the risk of privacy-sensitive user data leakage. Securing data transmission among IoT devices is therefore a critical capability of IoT environments such as Intelligent Connected Vehicles, Smart Home, Intelligent City and so forth. However, cryptographic communication scheme is challenged by the limited resource of low-cost IoT devices, even negligible extra CPU usage of battery-powered sensors would result in dramatical decrease of the battery life. In this paper, to minimize the resource consumption, we propose a communication protocol involving only the symmetric key-based scheme, which provides ultra-lightweight yet effective encryptions to protect the data transmissions. Symmetric keys generated in this protocol are delegated based on a chaotic system, i.e., Logistic Map, to resist against the key reset and device capture attacks. We semantically model such protocol and analyze the security properties. Moreover, the resource consumption is also evaluated to guarantee runtime efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI