B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data

贝叶斯概率 反问题 反向 人工神经网络 计算机科学 统计物理学 算法 人工智能 数学 牙石(牙科) 应用数学 物理 医学 几何学 牙科 数学分析
作者
Liu Yang,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:425: 109913-109913 被引量:709
标识
DOI:10.1016/j.jcp.2020.109913
摘要

We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems described by partial differential equations (PDEs) and noisy data. In this Bayesian framework, the Bayesian neural network (BNN) combined with a PINN for PDEs serves as the prior while the Hamiltonian Monte Carlo (HMC) or the variational inference (VI) could serve as an estimator of the posterior. B-PINNs make use of both physical laws and scattered noisy measurements to provide predictions and quantify the aleatoric uncertainty arising from the noisy data in the Bayesian framework. Compared with PINNs, in addition to uncertainty quantification, B-PINNs obtain more accurate predictions in scenarios with large noise due to their capability of avoiding overfitting. We conduct a systematic comparison between the two different approaches for the B-PINNs posterior estimation (i.e., HMC or VI), along with dropout used for quantifying uncertainty in deep neural networks. Our experiments show that HMC is more suitable than VI with mean field Gaussian approximation for the B-PINNs posterior estimation, while dropout employed in PINNs can hardly provide accurate predictions with reasonable uncertainty. Finally, we replace the BNN in the prior with a truncated Karhunen-Loève (KL) expansion combined with HMC or a deep normalizing flow (DNF) model as posterior estimators. The KL is as accurate as BNN and much faster but this framework cannot be easily extended to high-dimensional problems unlike the BNN based framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lmt完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
顾矜应助柚子采纳,获得10
1秒前
Lun伦完成签到,获得积分20
2秒前
2秒前
BERT完成签到,获得积分10
2秒前
2秒前
开心初雪完成签到,获得积分10
2秒前
李健的小迷弟应助666JACS采纳,获得10
3秒前
Jessica发布了新的文献求助10
3秒前
3秒前
生椰拿铁完成签到,获得积分10
4秒前
无奈母鸡完成签到,获得积分10
4秒前
烟花应助七七采纳,获得10
5秒前
科研通AI6应助jyyg采纳,获得10
5秒前
5秒前
MZCCaiajie完成签到,获得积分10
5秒前
5秒前
6秒前
jhz发布了新的文献求助10
6秒前
lollonglol完成签到,获得积分10
6秒前
朝歌完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
火火完成签到 ,获得积分10
8秒前
干饭完成签到,获得积分10
8秒前
亲亲紫荆完成签到,获得积分10
8秒前
popo完成签到,获得积分10
8秒前
半生瓜发布了新的文献求助10
8秒前
Russula_Chu发布了新的文献求助200
8秒前
勤劳雁应助无奈母鸡采纳,获得10
8秒前
wyx发布了新的文献求助10
9秒前
9秒前
111发布了新的文献求助10
10秒前
zccvbn完成签到,获得积分10
10秒前
崔昕雨发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475