B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data

过度拟合 不确定度量化 贝叶斯概率 反问题 后验概率 估计员 人工神经网络 贝叶斯推理 贝叶斯线性回归 计算机科学 偏微分方程 算法 人工智能 数学 数学优化 应用数学 机器学习 统计 数学分析
作者
Liu Yang,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:425: 109913-109913 被引量:567
标识
DOI:10.1016/j.jcp.2020.109913
摘要

We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems described by partial differential equations (PDEs) and noisy data. In this Bayesian framework, the Bayesian neural network (BNN) combined with a PINN for PDEs serves as the prior while the Hamiltonian Monte Carlo (HMC) or the variational inference (VI) could serve as an estimator of the posterior. B-PINNs make use of both physical laws and scattered noisy measurements to provide predictions and quantify the aleatoric uncertainty arising from the noisy data in the Bayesian framework. Compared with PINNs, in addition to uncertainty quantification, B-PINNs obtain more accurate predictions in scenarios with large noise due to their capability of avoiding overfitting. We conduct a systematic comparison between the two different approaches for the B-PINNs posterior estimation (i.e., HMC or VI), along with dropout used for quantifying uncertainty in deep neural networks. Our experiments show that HMC is more suitable than VI with mean field Gaussian approximation for the B-PINNs posterior estimation, while dropout employed in PINNs can hardly provide accurate predictions with reasonable uncertainty. Finally, we replace the BNN in the prior with a truncated Karhunen-Loève (KL) expansion combined with HMC or a deep normalizing flow (DNF) model as posterior estimators. The KL is as accurate as BNN and much faster but this framework cannot be easily extended to high-dimensional problems unlike the BNN based framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
BB发布了新的文献求助10
2秒前
1+1发布了新的文献求助10
3秒前
前进的光完成签到,获得积分10
3秒前
hull完成签到,获得积分10
4秒前
zhou发布了新的文献求助10
4秒前
wangyang完成签到 ,获得积分10
4秒前
快乐的土土完成签到 ,获得积分10
4秒前
斯文败类应助qs采纳,获得10
4秒前
王宝强的滴滴完成签到,获得积分10
4秒前
木子木公发布了新的文献求助10
4秒前
5秒前
LIUUU发布了新的文献求助10
5秒前
iyy完成签到,获得积分20
5秒前
5秒前
6秒前
木木完成签到 ,获得积分10
6秒前
6秒前
NicheFactor完成签到,获得积分10
7秒前
7秒前
威武的锅锅完成签到,获得积分10
9秒前
张医生完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
小熊软糖应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得80
11秒前
wanci应助科研通管家采纳,获得10
11秒前
11秒前
上岸的咸鱼完成签到,获得积分10
11秒前
虚幻凡柔发布了新的文献求助10
11秒前
12秒前
13秒前
顾矜应助123采纳,获得10
14秒前
开心千青发布了新的文献求助10
14秒前
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147764
求助须知:如何正确求助?哪些是违规求助? 2798817
关于积分的说明 7831609
捐赠科研通 2455685
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587