This paper presents an intelligent cooperative mission planning scheme for unmanned aerial vehicle (UAV) swarm, to search and attack the time-sensitive moving targets in uncertain dynamic environment, by using a hybrid artificial potential field and ant colony optimization (HAPF-ACO) method. In the search-attack mission environment of UAV swarm under the dynamic topology interaction, a time-sensitive target probability map is established. Based on the HAPF, the target attraction field, threat repulsive field and repulsive field are constructed for the environmental cognition. A distributed ACO algorithm is designed to improve the UAVs' global searching capability. For this mission planning problem, four time-sensitive moving target types and four constraint types of UAV swarm are considered, which will contribute to the practical applications of the HAPF-ACO. Several simulations are carried out to exhibit the superiority on the task execution efficiency and obstacle and collision avoidance performance of the proposed intelligent cooperative mission planning scheme.