Radiomic features derived from periprostatic fat on pre-surgical T2w MRI predict extraprostatic extension of prostate cancer identified on post-surgical pathology: preliminary results

前列腺切除术 前列腺癌 医学 生化复发 阶段(地层学) 前列腺 癌症 外科病理学 放射科 内科学 古生物学 生物
作者
Rakesh Shiradkar,Ruyuan Zuo,Amr Mahran,Lee Ponsky,Sree Harsha Tirumani,Anant Madabhushi
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 121-121 被引量:3
标识
DOI:10.1117/12.2551248
摘要

Periprostatic fat composition on T2-weighted (T2w) MRI has been shown to be associated with aggressive prostate cancer and may influence extraprostatic extension (EPE). In this study, we interrogate the periprostatic fat (PPF) region adjacent to cancer lesion on prostate T2w MRI. Patients with pathologic stage ≥ pT3a are considered to experience EPE (EPE+) and those with stage ≤ T2c are without EPE (EPE-) post radical prostatectomy (RP). We use a cohort of N = 45 prostate cancer patients retrospectively acquired from a single institution who underwent 3T multi-parametric MRI prior to RP. Radiomic features including 1st and 2nd order statistics, Haralick, Gabor, CoLlAGe features are extracted from a region of interest (ROI) in the PPF on pre-surgical T2w MRI delineated by an experienced radiologist. Haralick, gradient and CoLlAGe features were observed to be significantly different (p<0.05) in PPF ROIs between EPE+ and EPE- and were significantly over expressed in EPE+ patients compared to EPE- patients, suggesting a higher heterogeneity within the PPF region for EPE+ patients. These features were used to train machine learning classifiers using a 3-fold cross validation approach in conjunction with feature selection methods to predict EPE. The best classification performance was obtained with Support Vector Machine (SVM) classifiers resulting in an AUC = 0.88 (±0.04). On univariable and multivariable analysis, we observed that radiomic classifier predictions resulted in significant separation between EPE+ and EPE- while none of the routinely used clinical parameters including prostate specific antigen (PSA), Gleason Grade Groups (GGG), age, race and prostate imaging reporting and data system (PI-RADS v2) scores showed significant differences. Our results suggest that radiomic features may quantify the underlying heterogeneity in periprostatic fat and predict patients who are likely to experience extraprostatic extension of disease post RP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮元珊完成签到 ,获得积分10
1秒前
3秒前
untilyou完成签到,获得积分10
5秒前
lzl008完成签到 ,获得积分10
6秒前
6秒前
CC完成签到,获得积分10
6秒前
求助人员发布了新的文献求助10
8秒前
先锋老刘001完成签到,获得积分10
9秒前
慢慢完成签到,获得积分10
10秒前
如意的手套完成签到,获得积分10
11秒前
无花果应助Dr.向采纳,获得10
12秒前
栗子完成签到,获得积分10
13秒前
斯文的傲珊完成签到,获得积分10
14秒前
中恐完成签到,获得积分0
15秒前
yindi1991完成签到 ,获得积分10
16秒前
HY应助虞无声采纳,获得50
17秒前
jenna完成签到,获得积分10
18秒前
平常毛衣完成签到,获得积分10
21秒前
缥缈的闭月完成签到,获得积分10
25秒前
胖虎完成签到,获得积分10
26秒前
xlll完成签到,获得积分10
29秒前
tyyyyyy完成签到,获得积分10
33秒前
共享精神应助高兴的世倌采纳,获得10
35秒前
陈一完成签到,获得积分10
36秒前
一个漂流瓶完成签到,获得积分10
36秒前
qiaoxi完成签到,获得积分10
37秒前
米博士完成签到,获得积分10
38秒前
HY应助虞无声采纳,获得50
40秒前
Sleven完成签到,获得积分10
41秒前
优雅的千雁完成签到,获得积分10
44秒前
博博要毕业完成签到 ,获得积分10
47秒前
mayberichard完成签到,获得积分10
47秒前
black_cavalry完成签到,获得积分10
48秒前
52秒前
求助人员发布了新的文献求助10
59秒前
bone完成签到,获得积分10
1分钟前
斯文远望完成签到,获得积分10
1分钟前
强壮的美女完成签到,获得积分10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
miku完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689402
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118