Radiomic features derived from periprostatic fat on pre-surgical T2w MRI predict extraprostatic extension of prostate cancer identified on post-surgical pathology: preliminary results

前列腺切除术 前列腺癌 医学 生化复发 阶段(地层学) 前列腺 癌症 外科病理学 放射科 内科学 古生物学 生物
作者
Rakesh Shiradkar,Ruyuan Zuo,Amr Mahran,Lee Ponsky,Sree Harsha Tirumani,Anant Madabhushi
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 121-121 被引量:3
标识
DOI:10.1117/12.2551248
摘要

Periprostatic fat composition on T2-weighted (T2w) MRI has been shown to be associated with aggressive prostate cancer and may influence extraprostatic extension (EPE). In this study, we interrogate the periprostatic fat (PPF) region adjacent to cancer lesion on prostate T2w MRI. Patients with pathologic stage ≥ pT3a are considered to experience EPE (EPE+) and those with stage ≤ T2c are without EPE (EPE-) post radical prostatectomy (RP). We use a cohort of N = 45 prostate cancer patients retrospectively acquired from a single institution who underwent 3T multi-parametric MRI prior to RP. Radiomic features including 1st and 2nd order statistics, Haralick, Gabor, CoLlAGe features are extracted from a region of interest (ROI) in the PPF on pre-surgical T2w MRI delineated by an experienced radiologist. Haralick, gradient and CoLlAGe features were observed to be significantly different (p<0.05) in PPF ROIs between EPE+ and EPE- and were significantly over expressed in EPE+ patients compared to EPE- patients, suggesting a higher heterogeneity within the PPF region for EPE+ patients. These features were used to train machine learning classifiers using a 3-fold cross validation approach in conjunction with feature selection methods to predict EPE. The best classification performance was obtained with Support Vector Machine (SVM) classifiers resulting in an AUC = 0.88 (±0.04). On univariable and multivariable analysis, we observed that radiomic classifier predictions resulted in significant separation between EPE+ and EPE- while none of the routinely used clinical parameters including prostate specific antigen (PSA), Gleason Grade Groups (GGG), age, race and prostate imaging reporting and data system (PI-RADS v2) scores showed significant differences. Our results suggest that radiomic features may quantify the underlying heterogeneity in periprostatic fat and predict patients who are likely to experience extraprostatic extension of disease post RP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2752543083发布了新的文献求助10
1秒前
2秒前
今后应助123采纳,获得10
3秒前
3秒前
Chris学长完成签到,获得积分10
3秒前
3秒前
Grace发布了新的文献求助10
4秒前
5秒前
斯文败类应助山河采纳,获得10
5秒前
xlz发布了新的文献求助10
6秒前
hfm发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
研友_P85D6Z发布了新的文献求助10
9秒前
积极的惜筠完成签到 ,获得积分10
10秒前
10秒前
尘香如故完成签到 ,获得积分10
10秒前
科研通AI6.1应助混子玉采纳,获得10
11秒前
sunzhuxi发布了新的文献求助10
12秒前
mslg33完成签到,获得积分10
12秒前
玥玥玥玥发布了新的文献求助10
13秒前
15秒前
15秒前
哈哈完成签到,获得积分10
16秒前
SHYSHYLONG发布了新的文献求助10
16秒前
BRUCE发布了新的文献求助10
16秒前
17秒前
17秒前
NexusExplorer应助xlz采纳,获得10
18秒前
18秒前
慕青应助朴素的鸡翅采纳,获得10
19秒前
zl987发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
风趣的夜南关注了科研通微信公众号
22秒前
大道酬勤发布了新的文献求助10
22秒前
简单沛山发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174