已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoding of Brain Signals to Detect Perceived Color-Stimuli using Convolutional Neural Network

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 枕叶 刺激(心理学) 大脑活动与冥想 感知 彩色视觉 脑电图 分类器(UML) 神经科学 心理学 认知心理学
作者
Mousumi Laha,Sayantani Ghosh,Anurag Bagchi,Shraman Pramanick,Amit Konar
标识
DOI:10.1109/wispnet45539.2019.9032848
摘要

The paper aims at determining the active brain regions responsible for perceiving and understanding the sense of three basic color stimuli: red, green and blue. This is achieved in two main steps. In the first step, we take EEG response to color stimuli from the scalp using the standard 10-20 electrode system. Experiments undertaken using Exact Low Resolution Electromagnetic Topographic (eLORETA) software reveal that there exist long term (around 1 second) correlations between activated brain regions and the perceptual process of specific color stimulus. For instance, the parietal and the occipital lobe activations have long duration correlations with the blue color stimuli; whereas the prefrontal and the occipital lobe activations have correlations with the red color, while the temporal and the occipital lobe activations have correlations with the green color. In the second step, we classify the perceived color of the brain signals acquired from the selected brain regions. A one dimensional based Convolutional Neural Network (1DCNN) classifier has been designed to perform the classification process by utilizing the brain signals from the activated lobes. The present classifier model has also been compared with other primitive classifiers. Performance analysis followed by statistical tests undertaken reveals that the 1D CNN classifier outperforms its traditional counterparts by a wide margin. The proposed technique is expected to have interesting applications to explain the malfunctioning in recognition of colored stimuli due to damage in certain brain lobes like occipital, temporal etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
naomi发布了新的文献求助30
4秒前
共享精神应助靓丽的采白采纳,获得10
4秒前
5秒前
rachel-yue发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
xzy998应助鸿儒采纳,获得10
12秒前
尉迟发布了新的文献求助10
14秒前
王倩发布了新的文献求助10
14秒前
地平发布了新的文献求助20
15秒前
止山完成签到,获得积分10
15秒前
17秒前
止山发布了新的文献求助10
17秒前
完美世界应助Maximum采纳,获得10
20秒前
26秒前
shrak完成签到 ,获得积分10
30秒前
32秒前
乐乐应助春春采纳,获得10
36秒前
38秒前
烟花应助wnag采纳,获得10
39秒前
luckkit完成签到,获得积分10
42秒前
pluto应助鸿儒采纳,获得50
42秒前
43秒前
小二郎应助尉迟采纳,获得10
45秒前
积极的奇异果完成签到 ,获得积分10
46秒前
47秒前
48秒前
jinchen发布了新的文献求助10
48秒前
张包子完成签到 ,获得积分10
49秒前
我主沉浮发布了新的文献求助10
50秒前
wnag发布了新的文献求助10
52秒前
专注翠梅发布了新的文献求助10
53秒前
球球发布了新的文献求助10
53秒前
光撒盐完成签到,获得积分10
55秒前
星辰大海应助jinchen采纳,获得50
57秒前
春日无尾熊完成签到 ,获得积分10
58秒前
58秒前
落寞代桃完成签到 ,获得积分10
59秒前
尉迟完成签到,获得积分10
59秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314210
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530692
捐赠科研通 2622261
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665307
邀请新用户注册赠送积分活动 650838