微塑料
化学
聚苯乙烯
质谱法
离子迁移光谱法
热解
热重分析
环境化学
热解-气相色谱-质谱法
聚丙烯
色谱法
聚合物
分析化学(期刊)
有机化学
作者
Xiangnan Zhang,Hong Zhang,Kai Yu,Na Li,Yuning Liu,Xiangyu Liu,Hengnan Zhang,Bin Yang,Wenhai Wu,Jing Gao,Jie Jiang
标识
DOI:10.1021/acs.analchem.0c00300
摘要
Microplastics (MPs) pollution has drawn increasing concern due to its widespread occurrence and potential risks in the environment. The reliable methods and instruments for fast analysis of microplastics (MPs) less than 5 mm are urgently needed. In this study, a new method based on custom-made portable pyrolysis-mass spectrometry (Pyr-MS) is developed, which enables rapid identification and mass related quantification of MPs. MPs are decomposed in the compact pyrolyzer and then directly analyzed in the portable MS by the chemical fingerprints of polymers including characteristic ions and their special ratio. It avoids the complex extraction and separation procedures of the pyrolysis/thermogravimetric–gas chromatography–mass spectrometry (Pyr/TGA-GC-MS), realizes the rapid analysis of MPs in 5 min, and thus can practically apply to a large number of MPs samples. In comparison to Fourier transform infrared spectroscopy (FT-IR) and Raman, this method is not limited by the shape, size, and color of MPs. Four common plastics including polyethylene (PE), polypropylene (PP), polystyrene (PS), and poly(methyl methacrylate) (PMMA) were investigated to verify the feasibility of this method. The environmental MPs samples collected from a beach were successfully identified and quantified, demonstrating the simplicity and practicality of this approach. The influence of plastics aging on the chemical fingerprints and the potential of mixed plastics detection by Pyr-MS are also assessed. The portable Pyr-MS could provide a promising tool for in-field analysis of MPs such as ship-based marine MPs surveys.
科研通智能强力驱动
Strongly Powered by AbleSci AI