Deep convolutional neural networks for predicting leukemia-related transcription factor binding sites from DNA sequence data

卷积神经网络 DNA结合位点 支持向量机 人工智能 计算机科学 转录因子 深度学习 人工神经网络 机器学习 随机森林 模式识别(心理学) 计算生物学 基因 生物 发起人 遗传学 基因表达
作者
Jian He,Xuemei Pu,Menglong Li,Chuan Li,Yanzhi Guo
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:199: 103976-103976 被引量:7
标识
DOI:10.1016/j.chemolab.2020.103976
摘要

Transcription factors are proteins that could bind to specific DNA sequences so as to regulate gene expressions. Currently, identification of transcription factor binding sites locating in DNA sequences is very important for building regulatory model in biological systems and identifying pathogenic variations. Traditional machine-learning methods have been successfully used for biological prediction problems based on DNA or protein sequences, but they all need to manually extract numerical features, which is not only tedious, but also would ignore effective information of first-order sequences. In this paper, based on the principle of deep learning (DL), we constructed prediction model for transcription factor binding sites only from DNA original base sequences. Here, a DL method based on convolutional neural network (CNN) and long short-term memory (LSTM) were proposed to investigate four leukemia categories from the perspective of transcription factor binding sites using four large non-redundant datasets for acute, chronic, myeloid and lymphatic leukemia, respectively. Compared with three widely used machine-learning methods of artificial neural network (ANN), support vector machine (SVM) and random forest (RF), our DL method exhibits significant superiority in terms of prediction performance, since the prediction accuracy of three machine-learning models either based on sequence feature or k-mer feature extraction are all lower than that of DL model. The available DL models for four leukemia categories gives an average prediction accuracy of 75% based only on sequence segments with 101 bases, which indicates that the DL based method is promising with unique advantages over the traditional machine learning methods. But focusing on leukemia-related transcription factor binding site prediction, further improvements would be implemented such as optimizing base segment length and CNN architecture, in order to improve the current prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Owen应助小太阳采纳,获得10
3秒前
3秒前
如果我沉默完成签到,获得积分10
4秒前
科研怪人完成签到 ,获得积分10
5秒前
bxj发布了新的文献求助10
5秒前
dddhp完成签到,获得积分20
5秒前
和平星发布了新的文献求助10
6秒前
隐形曼青应助顺心裙子采纳,获得10
7秒前
8秒前
8秒前
cpe发布了新的文献求助10
8秒前
Hello应助酷炫的傲易采纳,获得10
9秒前
无情的烨磊完成签到,获得积分10
10秒前
pizi关注了科研通微信公众号
10秒前
小二郎应助莫西莫西采纳,获得10
11秒前
平常馒头完成签到 ,获得积分10
13秒前
15秒前
科目三应助sherwing2009采纳,获得10
18秒前
还寻思啥呢完成签到,获得积分10
18秒前
周冬华完成签到,获得积分10
19秒前
21秒前
毕双洲完成签到,获得积分10
21秒前
21秒前
沐泽完成签到,获得积分10
21秒前
22秒前
科研通AI2S应助悦耳的芒果采纳,获得10
22秒前
JJ_fly完成签到,获得积分10
22秒前
pizi发布了新的文献求助10
22秒前
23秒前
23秒前
i学习完成签到,获得积分10
24秒前
25秒前
25秒前
莫西莫西发布了新的文献求助10
25秒前
26秒前
26秒前
zhikaiyici应助还寻思啥呢采纳,获得10
28秒前
加菲丰丰应助sqk采纳,获得50
28秒前
李明发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905