An Adaptive CEEMDAN Thresholding Denoising Method Optimized by Nonlocal Means Algorithm

希尔伯特-黄变换 阈值 降噪 人工智能 模式识别(心理学) 算法 信号(编程语言) 噪音(视频) 数学 熵(时间箭头) 计算机科学 白噪声 图像(数学) 统计 物理 量子力学 程序设计语言
作者
Shuqing Zhang,Haitao Liu,Mengfei Hu,Anqi Jiang,Liguo Zhang,Fengjiao Xu,Guangpu Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 6891-6903 被引量:37
标识
DOI:10.1109/tim.2020.2978570
摘要

A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) thresholding denoising method optimized by nonlocal means (NLM) algorithm is proposed in this article. First, in order to enhance the adaptability and the accuracy of the algorithm, a composite screening method based on sample entropy-probability density-Mahalanobis distance for intrinsic mode functions (IMFs) is proposed. According to the proposed screening method, the IMFs are divided into three levels. Second, in order to obtain a threshold which can be adaptively changed, a threshold evaluation criterion is proposed to assist in selecting a suitable threshold. Then, the optimized thresholding denoising algorithm by the NLM is introduced to denoise the IMFs of different levels, in which the NLM algorithm with different parameters is used to smooth the different IMFs. Finally, all IMFs are reconstructed to obtain the denoised signal. The results of numerical simulation and experimental analysis to Doppler, Bumps, Signal3 (randomly generated nonstandard test signal) signals, partial discharge (PD) signals, and real signals show that the method of this article improves shortcomings of the traditional thresholding denoising method, such as inaccurate threshold selection, discontinuity of the data points of the denoised signals, and that the structure of the denoised signal is easily destroyed and the useful small-amplitude part of the denoised signal is easily discarded. The algorithm has better adaptability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sasa完成签到,获得积分20
2秒前
2秒前
sasa发布了新的文献求助10
5秒前
甜甜静槐发布了新的文献求助10
5秒前
Dxy-TOFA完成签到,获得积分10
6秒前
6秒前
8秒前
GaoChenxi发布了新的文献求助10
9秒前
Zzz呀完成签到 ,获得积分10
10秒前
沉默诗兰完成签到,获得积分10
10秒前
13秒前
Wqian发布了新的文献求助10
16秒前
23秒前
浮游应助单薄的寻桃采纳,获得10
24秒前
27秒前
Jodie发布了新的文献求助10
29秒前
29秒前
科研通AI6应助nmeiko采纳,获得10
29秒前
30秒前
qxm完成签到 ,获得积分10
32秒前
33秒前
Quanta完成签到,获得积分10
34秒前
渔婆发布了新的文献求助10
35秒前
laruijoint完成签到,获得积分10
35秒前
淘气乌龙茶完成签到 ,获得积分10
36秒前
鹏程完成签到,获得积分10
38秒前
丘比特应助呆妞采纳,获得10
41秒前
42秒前
蔡克东发布了新的文献求助10
42秒前
LL完成签到 ,获得积分10
47秒前
小泡芙完成签到,获得积分10
48秒前
朱梦琳朱梦琳完成签到,获得积分10
49秒前
49秒前
49秒前
古藤完成签到 ,获得积分10
50秒前
54秒前
在水一方应助伯言采纳,获得10
54秒前
吴咪发布了新的文献求助10
54秒前
呆妞发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555