An Adaptive CEEMDAN Thresholding Denoising Method Optimized by Nonlocal Means Algorithm

希尔伯特-黄变换 阈值 降噪 人工智能 模式识别(心理学) 算法 信号(编程语言) 噪音(视频) 数学 熵(时间箭头) 计算机科学 白噪声 图像(数学) 统计 物理 量子力学 程序设计语言
作者
Shuqing Zhang,Haitao Liu,Mengfei Hu,Anqi Jiang,Liguo Zhang,Fengjiao Xu,Guangpu Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 6891-6903 被引量:37
标识
DOI:10.1109/tim.2020.2978570
摘要

A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) thresholding denoising method optimized by nonlocal means (NLM) algorithm is proposed in this article. First, in order to enhance the adaptability and the accuracy of the algorithm, a composite screening method based on sample entropy-probability density-Mahalanobis distance for intrinsic mode functions (IMFs) is proposed. According to the proposed screening method, the IMFs are divided into three levels. Second, in order to obtain a threshold which can be adaptively changed, a threshold evaluation criterion is proposed to assist in selecting a suitable threshold. Then, the optimized thresholding denoising algorithm by the NLM is introduced to denoise the IMFs of different levels, in which the NLM algorithm with different parameters is used to smooth the different IMFs. Finally, all IMFs are reconstructed to obtain the denoised signal. The results of numerical simulation and experimental analysis to Doppler, Bumps, Signal3 (randomly generated nonstandard test signal) signals, partial discharge (PD) signals, and real signals show that the method of this article improves shortcomings of the traditional thresholding denoising method, such as inaccurate threshold selection, discontinuity of the data points of the denoised signals, and that the structure of the denoised signal is easily destroyed and the useful small-amplitude part of the denoised signal is easily discarded. The algorithm has better adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
董菲音发布了新的文献求助10
刚刚
1秒前
3秒前
chloe完成签到,获得积分10
3秒前
鞑靼发布了新的文献求助10
4秒前
5秒前
领导范儿应助朱钰琪采纳,获得10
5秒前
5秒前
7秒前
to完成签到 ,获得积分10
7秒前
琼琼子完成签到 ,获得积分10
8秒前
汉堡包应助吃一口王俊凯采纳,获得10
8秒前
刘斌发布了新的文献求助10
9秒前
9秒前
martiniwine发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
是赤赤呀完成签到,获得积分10
12秒前
dddddd发布了新的文献求助10
12秒前
Asahi完成签到,获得积分10
13秒前
Wav发布了新的文献求助10
14秒前
研友_nv2krn发布了新的文献求助10
15秒前
jilgy发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
思源应助科研通管家采纳,获得10
19秒前
寻道图强应助科研通管家采纳,获得30
19秒前
穆紫应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
Li应助123asd采纳,获得10
20秒前
星星完成签到,获得积分10
22秒前
future完成签到 ,获得积分10
22秒前
宇文思完成签到,获得积分10
23秒前
24秒前
24秒前
jilgy完成签到,获得积分10
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825