An Adaptive CEEMDAN Thresholding Denoising Method Optimized by Nonlocal Means Algorithm

希尔伯特-黄变换 阈值 降噪 人工智能 模式识别(心理学) 算法 信号(编程语言) 噪音(视频) 数学 熵(时间箭头) 计算机科学 白噪声 图像(数学) 统计 物理 量子力学 程序设计语言
作者
Shuqing Zhang,Haitao Liu,Mengfei Hu,Anqi Jiang,Liguo Zhang,Fengjiao Xu,Guangpu Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 6891-6903 被引量:37
标识
DOI:10.1109/tim.2020.2978570
摘要

A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) thresholding denoising method optimized by nonlocal means (NLM) algorithm is proposed in this article. First, in order to enhance the adaptability and the accuracy of the algorithm, a composite screening method based on sample entropy-probability density-Mahalanobis distance for intrinsic mode functions (IMFs) is proposed. According to the proposed screening method, the IMFs are divided into three levels. Second, in order to obtain a threshold which can be adaptively changed, a threshold evaluation criterion is proposed to assist in selecting a suitable threshold. Then, the optimized thresholding denoising algorithm by the NLM is introduced to denoise the IMFs of different levels, in which the NLM algorithm with different parameters is used to smooth the different IMFs. Finally, all IMFs are reconstructed to obtain the denoised signal. The results of numerical simulation and experimental analysis to Doppler, Bumps, Signal3 (randomly generated nonstandard test signal) signals, partial discharge (PD) signals, and real signals show that the method of this article improves shortcomings of the traditional thresholding denoising method, such as inaccurate threshold selection, discontinuity of the data points of the denoised signals, and that the structure of the denoised signal is easily destroyed and the useful small-amplitude part of the denoised signal is easily discarded. The algorithm has better adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
琦琦完成签到,获得积分20
刚刚
乐友刘关注了科研通微信公众号
1秒前
1秒前
qyy完成签到,获得积分10
2秒前
yurh完成签到,获得积分10
2秒前
2秒前
LArry发布了新的文献求助10
2秒前
4秒前
符严青完成签到,获得积分10
4秒前
高兴微笑完成签到,获得积分10
4秒前
li完成签到,获得积分10
5秒前
天真博超发布了新的文献求助10
5秒前
6秒前
NIER发布了新的文献求助20
6秒前
pantio发布了新的文献求助10
6秒前
zy完成签到,获得积分10
6秒前
Gzl发布了新的文献求助10
7秒前
小马甲应助心灵美绝施采纳,获得10
7秒前
asdfg发布了新的文献求助10
7秒前
8秒前
丰那个丰发布了新的文献求助10
9秒前
大个应助小猫宝采纳,获得10
9秒前
9秒前
略略略完成签到,获得积分10
9秒前
汉堡包应助EED采纳,获得10
9秒前
坦率的匪举报xz求助涉嫌违规
10秒前
顾矜应助Deny采纳,获得10
11秒前
杪秋三十发布了新的文献求助30
12秒前
zy发布了新的文献求助10
12秒前
陈鑫发布了新的文献求助10
12秒前
111发布了新的文献求助10
12秒前
13秒前
winwin完成签到,获得积分10
13秒前
结实盼烟完成签到,获得积分10
14秒前
sunchengcehng发布了新的文献求助30
15秒前
Alinf完成签到,获得积分10
15秒前
15秒前
Alan完成签到,获得积分10
15秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653