How a Virus Circumvents Energy Barriers to Form Symmetric Shells

二十面体对称 成核 衣壳 内在无序蛋白质 化学物理 结晶学 生物物理学 核蛋白 散射 能源景观 纳米团簇 化学 材料科学 物理 纳米技术 生物 病毒 有机化学 生物化学 病毒学 光学
作者
Sanaz Panahandeh,Siyu Li,Laurent Marichal,Rafael Leite Rubim,Guillaume Tresset,Roya Zandi
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (3): 3170-3180 被引量:48
标识
DOI:10.1021/acsnano.9b08354
摘要

Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially bind to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the question as to how virions are assembled into a highly ordered structure in the host cell. Using small-angle X-ray scattering, we find out that a disorder–order transition occurs under physiological conditions upon an increase in capsid protein concentrations. Our cryo-transmission electron microscopy reveals closed spherical shells containing in vitro transcribed viral RNA even at pH 7.5, in marked contrast with the previous observations. We use Monte Carlo simulations to explain this disorder–order transition and find that, as the shell grows, the structures of disordered intermediates in which the distribution of pentamers does not belong to the icosahedral subgroups become energetically so unfavorable that the caps can easily dissociate and reassemble, overcoming the energy barriers for the formation of perfect icosahedral shells. In addition, we monitor the growth of capsids under the condition that the nucleation and growth is the dominant pathway and show that the key for the disorder–order transition in both en masse and nucleation and growth pathways lies in the strength of elastic energy compared to the other forces in the system including protein–protein interactions and the chemical potential of free subunits. Our findings explain, at least in part, why perfect virions with icosahedral order form under different conditions including physiological ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助xuan采纳,获得10
刚刚
1秒前
狂野悟空完成签到,获得积分10
1秒前
HEIKU应助科研通管家采纳,获得10
2秒前
哎嘿应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
暮霭沉沉应助科研通管家采纳,获得10
2秒前
典雅的夜安完成签到,获得积分10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
扎心应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
哎嘿应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
3秒前
Clover04应助科研通管家采纳,获得10
3秒前
随机完成签到,获得积分10
3秒前
噜噜发布了新的文献求助10
3秒前
4秒前
ZHANG发布了新的文献求助10
4秒前
无心的青槐完成签到,获得积分10
5秒前
binfo发布了新的文献求助10
6秒前
小蘑菇应助bxw采纳,获得10
7秒前
跳跃的惮发布了新的文献求助10
7秒前
guo发布了新的文献求助30
8秒前
阔达的盼波完成签到,获得积分10
9秒前
今天你读文献了吗完成签到,获得积分10
9秒前
野原完成签到,获得积分10
9秒前
Jun完成签到,获得积分10
9秒前
9秒前
XUU发布了新的文献求助10
9秒前
幽默胜完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012