A Survey on Canonical Correlation Analysis

典型相关 计算机科学 成对比较 奇异值分解 降维 数据挖掘 概率逻辑 人工智能 主成分分析 核(代数) 判别式 维数之咒 机器学习 一致性(知识库) 数学 组合数学
作者
Xinghao Yang,Weifeng Liu,Wei Liu,Dacheng Tao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:33 (6): 2349-2368 被引量:126
标识
DOI:10.1109/tkde.2019.2958342
摘要

In recent years, the advances in data collection and statistical analysis promotes canonical correlation analysis (CCA) available for more advanced research. CCA is the main technique for two-set data dimensionality reduction such that the correlation between the pairwise variables in the common subspace is mutually maximized. Over 80-years of developments, a number of CCA models have been proposed according to different machine learning mechanisms. However, the field lacks an insightful review for the state-of-art developments. This survey targets to provide a well-organized overview for CCA and its extensions. Specifically, we first review the CCA theory from the perspective of both model formation and model optimization. The association between two popular solution methods, i.e., eigen value decomposition (EVD) and singular value decomposition (SVD), are discussed. Following that, we present a taxonomy of current progresses and classify them into seven groups: 1) multi-view CCA, 2) probabilistic CCA, 3) deep CCA, 4) kernel CCA, 5) discriminative CCA, 6) sparse CCA and 7) locality preserving CCA. For each group, we demonstrate two or three representative mathematical models, identifying their strengths and limitations. We summarize the representative applications and numerical results of these seven groups in real-world practices, collecting the data sets and open-sources for implementation. In the end, we provide several promising future research directions that can improve the current state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ANG完成签到 ,获得积分10
刚刚
Bieshiyuan完成签到,获得积分10
1秒前
卓凡发布了新的文献求助10
1秒前
1秒前
凶狠的剑封完成签到 ,获得积分20
1秒前
酷酷从蕾完成签到,获得积分10
2秒前
赵某发布了新的文献求助10
2秒前
Jasper应助99tyz采纳,获得10
2秒前
科研通AI5应助明亮的若南采纳,获得10
2秒前
2秒前
炒栗子发布了新的文献求助10
2秒前
梓榆发布了新的文献求助20
3秒前
文艺的筮完成签到 ,获得积分10
3秒前
伯赏聪展完成签到,获得积分10
3秒前
3秒前
灵巧书蝶发布了新的文献求助10
3秒前
3秒前
科研通AI6应助苦逼化学人采纳,获得10
4秒前
顺心秋天完成签到,获得积分10
4秒前
英俊的铭应助聪明纸飞机采纳,获得10
4秒前
4秒前
水枝完成签到,获得积分10
5秒前
5秒前
5秒前
wjzhan完成签到,获得积分10
5秒前
bkagyin应助清脆惜寒采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
二枫忆桑完成签到,获得积分10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
夜幕应助科研通管家采纳,获得20
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
结实星星发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
傅以柳发布了新的文献求助10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
Jasper应助DRDOC采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599250
求助须知:如何正确求助?哪些是违规求助? 4009968
关于积分的说明 12414035
捐赠科研通 3689591
什么是DOI,文献DOI怎么找? 2033925
邀请新用户注册赠送积分活动 1067094
科研通“疑难数据库(出版商)”最低求助积分说明 952171