A Survey on Canonical Correlation Analysis

典型相关 计算机科学 成对比较 奇异值分解 降维 数据挖掘 概率逻辑 人工智能 主成分分析 核(代数) 判别式 维数之咒 机器学习 一致性(知识库) 数学 组合数学
作者
Xinghao Yang,Weifeng Liu,Wei Liu,Dacheng Tao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2349-2368 被引量:126
标识
DOI:10.1109/tkde.2019.2958342
摘要

In recent years, the advances in data collection and statistical analysis promotes canonical correlation analysis (CCA) available for more advanced research. CCA is the main technique for two-set data dimensionality reduction such that the correlation between the pairwise variables in the common subspace is mutually maximized. Over 80-years of developments, a number of CCA models have been proposed according to different machine learning mechanisms. However, the field lacks an insightful review for the state-of-art developments. This survey targets to provide a well-organized overview for CCA and its extensions. Specifically, we first review the CCA theory from the perspective of both model formation and model optimization. The association between two popular solution methods, i.e., eigen value decomposition (EVD) and singular value decomposition (SVD), are discussed. Following that, we present a taxonomy of current progresses and classify them into seven groups: 1) multi-view CCA, 2) probabilistic CCA, 3) deep CCA, 4) kernel CCA, 5) discriminative CCA, 6) sparse CCA and 7) locality preserving CCA. For each group, we demonstrate two or three representative mathematical models, identifying their strengths and limitations. We summarize the representative applications and numerical results of these seven groups in real-world practices, collecting the data sets and open-sources for implementation. In the end, we provide several promising future research directions that can improve the current state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李繁蕊发布了新的文献求助10
刚刚
眼睛大的鑫磊完成签到,获得积分10
刚刚
雪白红紫完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
Fareth发布了新的文献求助10
2秒前
Air云完成签到,获得积分10
2秒前
PakhoPHD完成签到 ,获得积分10
2秒前
玉麒麟完成签到,获得积分0
3秒前
Angela完成签到,获得积分10
3秒前
希望天下0贩的0应助小吴采纳,获得10
3秒前
3秒前
lilac应助苹果煎饼采纳,获得10
4秒前
大模型应助百宝采纳,获得10
4秒前
怕黑砖头完成签到,获得积分10
5秒前
6秒前
6秒前
花玥鹿完成签到,获得积分10
6秒前
cybbbbbb完成签到,获得积分10
6秒前
咳咳完成签到,获得积分10
6秒前
7秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
7秒前
7秒前
Fareth完成签到,获得积分10
7秒前
领导范儿应助故意的绿竹采纳,获得10
7秒前
7秒前
复杂谷蓝完成签到 ,获得积分10
7秒前
8秒前
迟大猫应助于某人采纳,获得10
8秒前
qingkong发布了新的文献求助10
9秒前
9秒前
9秒前
细腻白柏完成签到,获得积分10
9秒前
9秒前
麦满分完成签到,获得积分10
10秒前
长度2到发布了新的文献求助10
10秒前
Alicia完成签到,获得积分10
11秒前
西瓜大虫完成签到,获得积分10
11秒前
害羞聋五发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740