Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec based algorithms

朴素贝叶斯分类器 决策树 人工智能 机器学习 肝细胞癌 算法 计算机科学 人工神经网络 逻辑回归 相关性 数据预处理 支持向量机 医学 数学 内科学 几何学
作者
Yuankui Cao,Junqing Fan,Hong Cao,Yunliang Chen,Jie Li,Jianxin Li,Simin Zhang
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:11 (2) 被引量:3
标识
DOI:10.1002/widm.1390
摘要

Abstract Liver cancer has become the third cause that leads to the cancer death. For hepatocellular carcinoma (HCC), as the highly malignant type of liver cancer, its recurrence rate after operation is still very high because there is no reliable clinical data to provide better advice for patients after operation. To solve the challenging issue, in this work, we design a novel prediction model for recurrence of HCC using neighbor2vec based algorithm. It consists of three stages: (a) In the preparation stage, the Pearson correlation coefficient was used to explore the independent predictors of HCC recurrence, (b) due to the low correlation between individual dimension and prediction target, K‐nearest neighbors (KNN) were found as a K ‐vectors list for each patient (neighbor2vec), (c) all vectors lists were applied as the input of machine learning methods such as logistic regression, KNN, decision tree, naive Bayes (NB), and deep neural network to establish the neighbor2vec based prediction model. From the experimental results on the real data from Shandong Provincial Hospital in China, the proposed neighbor2vec based prediction model outperforms all the other models. Especially, the NB model with neighbor2vec achieves up to 83.02, 82.86, 77.6%, in terms of accuracy, recall rates, and precision. This article is categorized under: Technologies > Data Preprocessing Technologies > Classification Technologies > Machine Learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z123完成签到,获得积分10
刚刚
帝休完成签到 ,获得积分10
1秒前
2秒前
LL完成签到,获得积分10
2秒前
jzw发布了新的文献求助10
2秒前
cen发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
宋宋宋2发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
as完成签到,获得积分10
6秒前
自由大叔发布了新的文献求助10
6秒前
阿双发布了新的文献求助20
7秒前
涂图发布了新的文献求助30
7秒前
7秒前
顺利的战斗机应助liaomr采纳,获得10
7秒前
AlvinCZY发布了新的文献求助10
8秒前
可耐的青雪完成签到,获得积分10
8秒前
Ausna发布了新的文献求助10
9秒前
hahaha发布了新的文献求助10
9秒前
11秒前
11秒前
kuma完成签到,获得积分10
11秒前
行走的土豆完成签到,获得积分10
12秒前
纸抽盒发布了新的文献求助200
12秒前
12秒前
lingboxian完成签到,获得积分10
12秒前
13秒前
13秒前
赵小米完成签到,获得积分10
14秒前
雪白浩天完成签到,获得积分10
14秒前
pluto应助老朱采纳,获得10
14秒前
15秒前
yibochao发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298