Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec based algorithms

朴素贝叶斯分类器 决策树 人工智能 机器学习 肝细胞癌 算法 计算机科学 人工神经网络 逻辑回归 相关性 数据预处理 支持向量机 医学 数学 内科学 几何学
作者
Yuankui Cao,Junqing Fan,Hong Cao,Yunliang Chen,Jie Li,Jianxin Li,Simin Zhang
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:11 (2) 被引量:3
标识
DOI:10.1002/widm.1390
摘要

Abstract Liver cancer has become the third cause that leads to the cancer death. For hepatocellular carcinoma (HCC), as the highly malignant type of liver cancer, its recurrence rate after operation is still very high because there is no reliable clinical data to provide better advice for patients after operation. To solve the challenging issue, in this work, we design a novel prediction model for recurrence of HCC using neighbor2vec based algorithm. It consists of three stages: (a) In the preparation stage, the Pearson correlation coefficient was used to explore the independent predictors of HCC recurrence, (b) due to the low correlation between individual dimension and prediction target, K‐nearest neighbors (KNN) were found as a K ‐vectors list for each patient (neighbor2vec), (c) all vectors lists were applied as the input of machine learning methods such as logistic regression, KNN, decision tree, naive Bayes (NB), and deep neural network to establish the neighbor2vec based prediction model. From the experimental results on the real data from Shandong Provincial Hospital in China, the proposed neighbor2vec based prediction model outperforms all the other models. Especially, the NB model with neighbor2vec achieves up to 83.02, 82.86, 77.6%, in terms of accuracy, recall rates, and precision. This article is categorized under: Technologies > Data Preprocessing Technologies > Classification Technologies > Machine Learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111111发布了新的文献求助10
刚刚
傻芙芙的发布了新的文献求助10
刚刚
隐形曼青应助何pengda采纳,获得10
刚刚
天天快乐应助suo采纳,获得10
1秒前
1秒前
1秒前
苹果发布了新的文献求助10
2秒前
Songzi完成签到,获得积分10
3秒前
ldy发布了新的文献求助10
3秒前
3秒前
机灵听蓉完成签到,获得积分20
4秒前
WSS发布了新的文献求助10
4秒前
LS完成签到 ,获得积分10
4秒前
6秒前
搜集达人应助ark861023采纳,获得10
7秒前
zakarya完成签到,获得积分10
7秒前
fy发布了新的文献求助30
7秒前
8秒前
8秒前
sam发布了新的文献求助10
8秒前
8秒前
hx完成签到,获得积分10
9秒前
10秒前
zakarya发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
打打应助忆仙姿采纳,获得10
12秒前
12秒前
未曾去过_关注了科研通微信公众号
12秒前
明亮发布了新的文献求助10
13秒前
14秒前
晴天不下雨完成签到,获得积分10
14秒前
15秒前
star完成签到,获得积分10
15秒前
infe发布了新的文献求助10
15秒前
15秒前
maopf发布了新的文献求助10
15秒前
Smar_zcl举报Wguan求助涉嫌违规
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330614
求助须知:如何正确求助?哪些是违规求助? 4470121
关于积分的说明 13911993
捐赠科研通 4363392
什么是DOI,文献DOI怎么找? 2396902
邀请新用户注册赠送积分活动 1390329
关于科研通互助平台的介绍 1361045