Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec based algorithms

朴素贝叶斯分类器 决策树 人工智能 机器学习 肝细胞癌 算法 计算机科学 人工神经网络 逻辑回归 相关性 数据预处理 支持向量机 医学 数学 内科学 几何学
作者
Yuankui Cao,Junqing Fan,Hong Cao,Yunliang Chen,Jie Li,Jianxin Li,Simin Zhang
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:11 (2) 被引量:3
标识
DOI:10.1002/widm.1390
摘要

Abstract Liver cancer has become the third cause that leads to the cancer death. For hepatocellular carcinoma (HCC), as the highly malignant type of liver cancer, its recurrence rate after operation is still very high because there is no reliable clinical data to provide better advice for patients after operation. To solve the challenging issue, in this work, we design a novel prediction model for recurrence of HCC using neighbor2vec based algorithm. It consists of three stages: (a) In the preparation stage, the Pearson correlation coefficient was used to explore the independent predictors of HCC recurrence, (b) due to the low correlation between individual dimension and prediction target, K‐nearest neighbors (KNN) were found as a K ‐vectors list for each patient (neighbor2vec), (c) all vectors lists were applied as the input of machine learning methods such as logistic regression, KNN, decision tree, naive Bayes (NB), and deep neural network to establish the neighbor2vec based prediction model. From the experimental results on the real data from Shandong Provincial Hospital in China, the proposed neighbor2vec based prediction model outperforms all the other models. Especially, the NB model with neighbor2vec achieves up to 83.02, 82.86, 77.6%, in terms of accuracy, recall rates, and precision. This article is categorized under: Technologies > Data Preprocessing Technologies > Classification Technologies > Machine Learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗佳威完成签到,获得积分10
刚刚
薛乎虚完成签到 ,获得积分10
刚刚
安静一曲完成签到 ,获得积分10
1秒前
不安莺完成签到,获得积分10
4秒前
祈雪发布了新的文献求助10
4秒前
谦让的含海完成签到,获得积分10
5秒前
TTTTREE发布了新的文献求助20
5秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
阿玖完成签到 ,获得积分10
8秒前
布同完成签到,获得积分10
8秒前
堀江真夏完成签到 ,获得积分10
9秒前
Pauline完成签到 ,获得积分10
10秒前
能干戎完成签到,获得积分10
10秒前
悦耳怜南完成签到,获得积分10
10秒前
小丑鱼儿完成签到 ,获得积分10
11秒前
唐Doctor发布了新的文献求助10
12秒前
molly雨轩完成签到,获得积分10
12秒前
王明阳完成签到 ,获得积分10
12秒前
gcl完成签到,获得积分10
14秒前
Hzml完成签到 ,获得积分10
16秒前
妖精完成签到 ,获得积分10
17秒前
17秒前
18秒前
江哥完成签到,获得积分10
18秒前
mengmenglv完成签到 ,获得积分0
18秒前
xdc完成签到,获得积分20
18秒前
19秒前
Zo完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
明亮的小懒虫完成签到 ,获得积分10
21秒前
xdc发布了新的文献求助10
22秒前
wl完成签到,获得积分20
22秒前
gf完成签到 ,获得积分10
22秒前
英姑应助唐Doctor采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861