Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec based algorithms

朴素贝叶斯分类器 决策树 人工智能 机器学习 肝细胞癌 算法 计算机科学 人工神经网络 逻辑回归 相关性 数据预处理 支持向量机 医学 数学 内科学 几何学
作者
Yuankui Cao,Junqing Fan,Hong Cao,Yunliang Chen,Jie Li,Jianxin Li,Simin Zhang
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:11 (2) 被引量:3
标识
DOI:10.1002/widm.1390
摘要

Abstract Liver cancer has become the third cause that leads to the cancer death. For hepatocellular carcinoma (HCC), as the highly malignant type of liver cancer, its recurrence rate after operation is still very high because there is no reliable clinical data to provide better advice for patients after operation. To solve the challenging issue, in this work, we design a novel prediction model for recurrence of HCC using neighbor2vec based algorithm. It consists of three stages: (a) In the preparation stage, the Pearson correlation coefficient was used to explore the independent predictors of HCC recurrence, (b) due to the low correlation between individual dimension and prediction target, K‐nearest neighbors (KNN) were found as a K ‐vectors list for each patient (neighbor2vec), (c) all vectors lists were applied as the input of machine learning methods such as logistic regression, KNN, decision tree, naive Bayes (NB), and deep neural network to establish the neighbor2vec based prediction model. From the experimental results on the real data from Shandong Provincial Hospital in China, the proposed neighbor2vec based prediction model outperforms all the other models. Especially, the NB model with neighbor2vec achieves up to 83.02, 82.86, 77.6%, in terms of accuracy, recall rates, and precision. This article is categorized under: Technologies > Data Preprocessing Technologies > Classification Technologies > Machine Learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心星星发布了新的文献求助20
1秒前
冰兰阿托品完成签到 ,获得积分10
1秒前
皮皮发布了新的文献求助10
1秒前
独特元蝶发布了新的文献求助10
2秒前
2秒前
善学以致用应助艺玲采纳,获得10
3秒前
3秒前
3秒前
小SU哥完成签到,获得积分10
4秒前
4秒前
聪明的幼萱完成签到,获得积分10
5秒前
5秒前
zhangzf发布了新的文献求助10
5秒前
去银行整点金条完成签到 ,获得积分10
5秒前
5秒前
九儿发布了新的文献求助10
5秒前
yiding完成签到 ,获得积分10
5秒前
芋泥波波发布了新的文献求助10
6秒前
6秒前
Twonej应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Luna_aaa应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
ldroc发布了新的文献求助10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
核动力驴应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451