Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec based algorithms

朴素贝叶斯分类器 决策树 人工智能 机器学习 肝细胞癌 算法 计算机科学 人工神经网络 逻辑回归 相关性 数据预处理 支持向量机 医学 数学 内科学 几何学
作者
Yuankui Cao,Junqing Fan,Hong Cao,Yunliang Chen,Jie Li,Jianxin Li,Simin Zhang
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:11 (2) 被引量:3
标识
DOI:10.1002/widm.1390
摘要

Abstract Liver cancer has become the third cause that leads to the cancer death. For hepatocellular carcinoma (HCC), as the highly malignant type of liver cancer, its recurrence rate after operation is still very high because there is no reliable clinical data to provide better advice for patients after operation. To solve the challenging issue, in this work, we design a novel prediction model for recurrence of HCC using neighbor2vec based algorithm. It consists of three stages: (a) In the preparation stage, the Pearson correlation coefficient was used to explore the independent predictors of HCC recurrence, (b) due to the low correlation between individual dimension and prediction target, K‐nearest neighbors (KNN) were found as a K ‐vectors list for each patient (neighbor2vec), (c) all vectors lists were applied as the input of machine learning methods such as logistic regression, KNN, decision tree, naive Bayes (NB), and deep neural network to establish the neighbor2vec based prediction model. From the experimental results on the real data from Shandong Provincial Hospital in China, the proposed neighbor2vec based prediction model outperforms all the other models. Especially, the NB model with neighbor2vec achieves up to 83.02, 82.86, 77.6%, in terms of accuracy, recall rates, and precision. This article is categorized under: Technologies > Data Preprocessing Technologies > Classification Technologies > Machine Learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ericzhouxx完成签到,获得积分10
3秒前
图南完成签到,获得积分10
4秒前
LMW应助灯灯采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
希望天下0贩的0应助caihong1采纳,获得20
4秒前
mmmmm完成签到,获得积分10
5秒前
祝愿发布了新的文献求助10
5秒前
Haki发布了新的文献求助10
5秒前
6秒前
林读书发布了新的文献求助10
6秒前
WIL发布了新的文献求助10
6秒前
岁末完成签到 ,获得积分10
7秒前
gejun发布了新的文献求助10
8秒前
Zh完成签到,获得积分10
8秒前
8秒前
打打应助zuhayr采纳,获得10
9秒前
彭于晏应助小蓝采纳,获得30
10秒前
superlit完成签到,获得积分10
10秒前
wzglpdq完成签到,获得积分10
11秒前
淡淡的寄灵完成签到,获得积分10
11秒前
香蕉觅云应助研友_8RlQ2n采纳,获得10
11秒前
12秒前
逢考必过完成签到 ,获得积分10
12秒前
wangerer完成签到,获得积分10
12秒前
16秒前
活力的以寒完成签到 ,获得积分10
16秒前
Akim应助wzglpdq采纳,获得10
17秒前
17秒前
17秒前
卢不评发布了新的文献求助10
17秒前
Xuan完成签到,获得积分20
19秒前
脑洞疼应助负责念梦采纳,获得10
20秒前
jessietang完成签到 ,获得积分10
20秒前
斯文败类应助端庄的紫采纳,获得30
20秒前
量子星尘发布了新的文献求助10
21秒前
扶丽君发布了新的文献求助20
21秒前
小蓝发布了新的文献求助30
22秒前
22秒前
zuhayr发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869