Scaling simulation-to-real transfer by learning a latent space of robot skills

计算机科学 机器人 人工智能 机器学习 任务(项目管理) 稳健性(进化) 集合(抽象数据类型) 空格(标点符号) 工程类 生物化学 化学 系统工程 基因 程序设计语言 操作系统
作者
Ryan Julian,Eric Heiden,Zhanpeng He,Hejia Zhang,Stefan Schaal,Joseph J. Lim,Gaurav S. Sukhatme,Karol Hausman
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:39 (10-11): 1259-1278 被引量:2
标识
DOI:10.1177/0278364920944474
摘要

We present a strategy for simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation–reality gap, we propose a method for increasing the sample efficiency and robustness of existing simulation-to-real approaches which exploits hierarchy and online adaptation. Instead of learning a unique policy for each desired robotic task, we learn a diverse set of skills and their variations, and embed those skill variations in a continuously parameterized space. We then interpolate, search, and plan in this space to find a transferable policy which solves more complex, high-level tasks by combining low-level skills and their variations. In this work, we first characterize the behavior of this learned skill space, by experimenting with several techniques for composing pre-learned latent skills. We then discuss an algorithm which allows our method to perform long-horizon tasks never seen in simulation, by intelligently sequencing short-horizon latent skills. Our algorithm adapts to unseen tasks online by repeatedly choosing new skills from the latent space, using live sensor data and simulation to predict which latent skill will perform best next in the real world. Importantly, our method learns to control a real robot in joint-space to achieve these high-level tasks with little or no on-robot time, despite the fact that the low-level policies may not be perfectly transferable from simulation to real, and that the low-level skills were not trained on any examples of high-level tasks. In addition to our results indicating a lower sample complexity for families of tasks, we believe that our method provides a promising template for combining learning-based methods with proven classical robotics algorithms such as model-predictive control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven完成签到 ,获得积分10
1秒前
JamesPei应助阿龙采纳,获得10
1秒前
平淡的火龙果完成签到,获得积分10
1秒前
科研通AI2S应助易烊千玺采纳,获得10
1秒前
Sunflower完成签到,获得积分10
2秒前
spring079完成签到,获得积分10
2秒前
鹏虫虫完成签到 ,获得积分10
2秒前
3秒前
研友_nPPERn完成签到,获得积分10
3秒前
漓汐发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
skyy完成签到,获得积分10
5秒前
妮妮完成签到,获得积分20
6秒前
小二郎应助柱zzz采纳,获得10
6秒前
6秒前
好哥哥完成签到,获得积分10
7秒前
艾永涛完成签到,获得积分10
7秒前
faiting完成签到,获得积分10
8秒前
自然的吐司完成签到 ,获得积分10
8秒前
自由可兰完成签到,获得积分10
8秒前
FreeRay完成签到,获得积分10
9秒前
三叶草完成签到,获得积分10
9秒前
星毅发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
cyrong完成签到,获得积分10
11秒前
11秒前
FashionBoy应助五五哥采纳,获得10
12秒前
12秒前
yuhui完成签到,获得积分10
12秒前
sunny心晴完成签到 ,获得积分10
13秒前
huangsi完成签到,获得积分10
13秒前
yuanfangyi0306完成签到,获得积分10
13秒前
13秒前
General完成签到 ,获得积分10
13秒前
权秋尽完成签到,获得积分10
13秒前
快乐的海亦完成签到,获得积分10
15秒前
克里斯荔发布了新的文献求助10
15秒前
Sherry完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197