Scaling simulation-to-real transfer by learning a latent space of robot skills

计算机科学 机器人 人工智能 机器学习 任务(项目管理) 稳健性(进化) 集合(抽象数据类型) 空格(标点符号) 工程类 生物化学 基因 操作系统 化学 程序设计语言 系统工程
作者
Ryan Julian,Eric Heiden,Zhanpeng He,Hejia Zhang,Stefan Schaal,Joseph J. Lim,Gaurav S. Sukhatme,Karol Hausman
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:39 (10-11): 1259-1278 被引量:2
标识
DOI:10.1177/0278364920944474
摘要

We present a strategy for simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation–reality gap, we propose a method for increasing the sample efficiency and robustness of existing simulation-to-real approaches which exploits hierarchy and online adaptation. Instead of learning a unique policy for each desired robotic task, we learn a diverse set of skills and their variations, and embed those skill variations in a continuously parameterized space. We then interpolate, search, and plan in this space to find a transferable policy which solves more complex, high-level tasks by combining low-level skills and their variations. In this work, we first characterize the behavior of this learned skill space, by experimenting with several techniques for composing pre-learned latent skills. We then discuss an algorithm which allows our method to perform long-horizon tasks never seen in simulation, by intelligently sequencing short-horizon latent skills. Our algorithm adapts to unseen tasks online by repeatedly choosing new skills from the latent space, using live sensor data and simulation to predict which latent skill will perform best next in the real world. Importantly, our method learns to control a real robot in joint-space to achieve these high-level tasks with little or no on-robot time, despite the fact that the low-level policies may not be perfectly transferable from simulation to real, and that the low-level skills were not trained on any examples of high-level tasks. In addition to our results indicating a lower sample complexity for families of tasks, we believe that our method provides a promising template for combining learning-based methods with proven classical robotics algorithms such as model-predictive control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nil发布了新的文献求助10
1秒前
自由的青烟完成签到,获得积分10
1秒前
1秒前
彳亍1117应助大白采纳,获得10
1秒前
ding应助祈雨晴采纳,获得10
2秒前
2秒前
Accepted应助朱灭龙采纳,获得10
4秒前
cy完成签到 ,获得积分10
4秒前
欣欣完成签到,获得积分10
5秒前
5秒前
ahai完成签到 ,获得积分10
6秒前
小吕发布了新的文献求助10
7秒前
7秒前
Promise完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
juni12应助科研通管家采纳,获得30
9秒前
orixero应助科研通管家采纳,获得10
9秒前
kelsey完成签到,获得积分10
9秒前
小罗发布了新的文献求助10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
苗苗子子完成签到,获得积分10
12秒前
12秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787372
关于积分的说明 7781210
捐赠科研通 2443353
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625349
版权声明 600939