已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic soil desiccation crack recognition using deep learning

人工智能 阈值 分割 开裂 模式识别(心理学) 计算机科学 地质学 材料科学 图像(数学) 复合材料
作者
Jin‐Jian Xu,Hao Zhang,Chao‐Sheng Tang,Qing Cheng,Bo Liu,Bin Shi
出处
期刊:Geotechnique [Thomas Telford Ltd.]
卷期号:72 (4): 337-349 被引量:50
标识
DOI:10.1680/jgeot.20.p.091
摘要

Soil desiccation cracking is a common natural phenomenon. The existence of cracks can negatively impact both the mechanical and hydraulic properties of soil. Accurate acquisition of soil crack networks is not only the basis for obtaining the relevant geometrical parameters of crack networks, but also an important foundation and premise for further study about the formation mechanism of shrinkage and desiccation cracking. This study proposes a new automatic soil cracks recognition method based on a U-Net convolutional neural network (CNN) architecture for segmentation on soil desiccation crack images. The backbone of the U-Net encoder is selected as ResNet and a new loss function combining both binary cross-entropy (BCE) loss and dice loss is used during the training stage to fit an imbalance problem. Subsequently, the U-Net with an encoder based on ResNet and a decoder part is trained from end to end on a subset of 524 labelled crack images with 224 × 224 pixels for semantic segmentation. The U-Net architecture achieves 94·38%, 74·43% and 81·13% for precision, recall and dice scores on test sets, which are better than all results using the Otsu threshold method employed in the traditional crack image processing technique. Experimental results reveal that deep learning can achieve higher accuracy than the traditional method (binarisation by thresholding) in quantifying surface crack ratio, average crack width, total crack length and crack number. Moreover, deep learning can not only accurately identify cracks or spots by means of crack edge features, but also can accurately separate soil cracks and clod areas under a bad photographing condition (such as uneven illumination, a field environment or poor photographing angle). Overall, the proposed deep learning-based method presents a satisfactory performance in soil crack image recognition and quantification. It may also be applied to other materials with cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的傲之完成签到 ,获得积分10
1秒前
阔达雨灵完成签到 ,获得积分10
2秒前
五五五发布了新的文献求助10
2秒前
2秒前
大模型应助ooo采纳,获得10
2秒前
2秒前
科研通AI2S应助番茄炒蛋采纳,获得10
3秒前
睡觉大王完成签到 ,获得积分10
3秒前
太阳雨发布了新的文献求助10
4秒前
一米八八完成签到,获得积分10
4秒前
6秒前
皮皮蝦完成签到,获得积分10
7秒前
谨慎三问完成签到 ,获得积分10
8秒前
所所应助不够萌采纳,获得10
8秒前
Eric关注了科研通微信公众号
8秒前
璿_发布了新的文献求助10
8秒前
9秒前
Jason完成签到,获得积分20
12秒前
科研通AI6应助太阳雨采纳,获得10
12秒前
y9gyn_37发布了新的文献求助10
13秒前
NexusExplorer应助Q哈哈哈采纳,获得10
13秒前
tovfix完成签到,获得积分10
14秒前
Lucas应助刘佳采纳,获得10
16秒前
张张发布了新的文献求助10
16秒前
BAIZI完成签到,获得积分10
17秒前
yyc完成签到,获得积分10
18秒前
王正浩完成签到 ,获得积分10
21秒前
栗子完成签到 ,获得积分10
21秒前
gyh完成签到,获得积分10
21秒前
22秒前
无花果应助科研通管家采纳,获得30
22秒前
orixero应助科研通管家采纳,获得100
22秒前
22秒前
22秒前
23秒前
JOKER完成签到,获得积分10
24秒前
cz111完成签到 ,获得积分10
25秒前
领导范儿应助Ly采纳,获得10
26秒前
27秒前
Hello应助刘佳采纳,获得10
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384903
求助须知:如何正确求助?哪些是违规求助? 4507675
关于积分的说明 14028732
捐赠科研通 4417398
什么是DOI,文献DOI怎么找? 2426458
邀请新用户注册赠送积分活动 1419209
关于科研通互助平台的介绍 1397553