Automatic soil desiccation crack recognition using deep learning

人工智能 阈值 分割 开裂 模式识别(心理学) 计算机科学 地质学 材料科学 图像(数学) 复合材料
作者
Jin‐Jian Xu,Hao Zhang,Chao‐Sheng Tang,Qing Cheng,Bo Liu,Bin Shi
出处
期刊:Geotechnique [ICE Publishing]
卷期号:72 (4): 337-349 被引量:50
标识
DOI:10.1680/jgeot.20.p.091
摘要

Soil desiccation cracking is a common natural phenomenon. The existence of cracks can negatively impact both the mechanical and hydraulic properties of soil. Accurate acquisition of soil crack networks is not only the basis for obtaining the relevant geometrical parameters of crack networks, but also an important foundation and premise for further study about the formation mechanism of shrinkage and desiccation cracking. This study proposes a new automatic soil cracks recognition method based on a U-Net convolutional neural network (CNN) architecture for segmentation on soil desiccation crack images. The backbone of the U-Net encoder is selected as ResNet and a new loss function combining both binary cross-entropy (BCE) loss and dice loss is used during the training stage to fit an imbalance problem. Subsequently, the U-Net with an encoder based on ResNet and a decoder part is trained from end to end on a subset of 524 labelled crack images with 224 × 224 pixels for semantic segmentation. The U-Net architecture achieves 94·38%, 74·43% and 81·13% for precision, recall and dice scores on test sets, which are better than all results using the Otsu threshold method employed in the traditional crack image processing technique. Experimental results reveal that deep learning can achieve higher accuracy than the traditional method (binarisation by thresholding) in quantifying surface crack ratio, average crack width, total crack length and crack number. Moreover, deep learning can not only accurately identify cracks or spots by means of crack edge features, but also can accurately separate soil cracks and clod areas under a bad photographing condition (such as uneven illumination, a field environment or poor photographing angle). Overall, the proposed deep learning-based method presents a satisfactory performance in soil crack image recognition and quantification. It may also be applied to other materials with cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助火山采纳,获得10
1秒前
1秒前
2秒前
共享精神应助bbdd2334采纳,获得10
2秒前
maymei发布了新的文献求助10
3秒前
4秒前
小苹果发布了新的文献求助10
4秒前
心灵美凌柏完成签到,获得积分20
4秒前
Jasper应助现代子默采纳,获得10
5秒前
科研通AI2S应助beiest采纳,获得200
6秒前
7秒前
豆包完成签到,获得积分10
7秒前
8秒前
北纬工人发布了新的文献求助10
8秒前
jackie发布了新的文献求助10
10秒前
王讯完成签到,获得积分10
10秒前
11秒前
cctv18完成签到,获得积分0
11秒前
吴云鹏完成签到,获得积分10
12秒前
大个应助jackie采纳,获得20
14秒前
个性的糖豆发布了新的文献求助150
14秒前
xiaojia完成签到,获得积分10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得30
14秒前
Akim应助科研通管家采纳,获得10
14秒前
Owen应助annali采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
柯一一应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371