亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic soil desiccation crack recognition using deep learning

人工智能 阈值 分割 开裂 模式识别(心理学) 计算机科学 地质学 材料科学 图像(数学) 复合材料
作者
Jin‐Jian Xu,Hao Zhang,Chao‐Sheng Tang,Qing Cheng,Bo Liu,Bin Shi
出处
期刊:Geotechnique [Thomas Telford Ltd.]
卷期号:72 (4): 337-349 被引量:50
标识
DOI:10.1680/jgeot.20.p.091
摘要

Soil desiccation cracking is a common natural phenomenon. The existence of cracks can negatively impact both the mechanical and hydraulic properties of soil. Accurate acquisition of soil crack networks is not only the basis for obtaining the relevant geometrical parameters of crack networks, but also an important foundation and premise for further study about the formation mechanism of shrinkage and desiccation cracking. This study proposes a new automatic soil cracks recognition method based on a U-Net convolutional neural network (CNN) architecture for segmentation on soil desiccation crack images. The backbone of the U-Net encoder is selected as ResNet and a new loss function combining both binary cross-entropy (BCE) loss and dice loss is used during the training stage to fit an imbalance problem. Subsequently, the U-Net with an encoder based on ResNet and a decoder part is trained from end to end on a subset of 524 labelled crack images with 224 × 224 pixels for semantic segmentation. The U-Net architecture achieves 94·38%, 74·43% and 81·13% for precision, recall and dice scores on test sets, which are better than all results using the Otsu threshold method employed in the traditional crack image processing technique. Experimental results reveal that deep learning can achieve higher accuracy than the traditional method (binarisation by thresholding) in quantifying surface crack ratio, average crack width, total crack length and crack number. Moreover, deep learning can not only accurately identify cracks or spots by means of crack edge features, but also can accurately separate soil cracks and clod areas under a bad photographing condition (such as uneven illumination, a field environment or poor photographing angle). Overall, the proposed deep learning-based method presents a satisfactory performance in soil crack image recognition and quantification. It may also be applied to other materials with cracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美语兰完成签到 ,获得积分10
11秒前
美好灵寒完成签到 ,获得积分10
30秒前
小二郎应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
猫猫豆包完成签到,获得积分10
42秒前
Orange应助儒雅的冥王星采纳,获得100
1分钟前
1分钟前
笑傲完成签到,获得积分10
1分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
henrychen完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
6分钟前
隐形曼青应助科研小贩采纳,获得10
6分钟前
ranj完成签到,获得积分10
6分钟前
上官若男应助金水相生采纳,获得10
6分钟前
6分钟前
调皮千兰发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
sujiaoziemo完成签到,获得积分10
7分钟前
zzw18512467916完成签到,获得积分10
7分钟前
7分钟前
完美世界应助调皮千兰采纳,获得10
7分钟前
乐乐应助赵振辉采纳,获得10
7分钟前
yang发布了新的文献求助10
7分钟前
bdsb完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899