Automatic soil desiccation crack recognition using deep learning

人工智能 阈值 分割 开裂 模式识别(心理学) 计算机科学 地质学 材料科学 图像(数学) 复合材料
作者
Jin‐Jian Xu,Hao Zhang,Chao‐Sheng Tang,Qing Cheng,Bo Liu,Bin Shi
出处
期刊:Geotechnique [Thomas Telford Ltd.]
卷期号:72 (4): 337-349 被引量:50
标识
DOI:10.1680/jgeot.20.p.091
摘要

Soil desiccation cracking is a common natural phenomenon. The existence of cracks can negatively impact both the mechanical and hydraulic properties of soil. Accurate acquisition of soil crack networks is not only the basis for obtaining the relevant geometrical parameters of crack networks, but also an important foundation and premise for further study about the formation mechanism of shrinkage and desiccation cracking. This study proposes a new automatic soil cracks recognition method based on a U-Net convolutional neural network (CNN) architecture for segmentation on soil desiccation crack images. The backbone of the U-Net encoder is selected as ResNet and a new loss function combining both binary cross-entropy (BCE) loss and dice loss is used during the training stage to fit an imbalance problem. Subsequently, the U-Net with an encoder based on ResNet and a decoder part is trained from end to end on a subset of 524 labelled crack images with 224 × 224 pixels for semantic segmentation. The U-Net architecture achieves 94·38%, 74·43% and 81·13% for precision, recall and dice scores on test sets, which are better than all results using the Otsu threshold method employed in the traditional crack image processing technique. Experimental results reveal that deep learning can achieve higher accuracy than the traditional method (binarisation by thresholding) in quantifying surface crack ratio, average crack width, total crack length and crack number. Moreover, deep learning can not only accurately identify cracks or spots by means of crack edge features, but also can accurately separate soil cracks and clod areas under a bad photographing condition (such as uneven illumination, a field environment or poor photographing angle). Overall, the proposed deep learning-based method presents a satisfactory performance in soil crack image recognition and quantification. It may also be applied to other materials with cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmx完成签到 ,获得积分10
2秒前
YNC关闭了YNC文献求助
2秒前
Vui77on完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
SinDK完成签到,获得积分10
6秒前
沉默钢笔完成签到,获得积分10
7秒前
这瓜不卖发布了新的文献求助10
8秒前
8秒前
ysf发布了新的文献求助10
8秒前
9秒前
9秒前
周芷卉发布了新的文献求助10
9秒前
HP发布了新的文献求助10
11秒前
以韓完成签到 ,获得积分10
13秒前
南风不竞发布了新的文献求助10
14秒前
小晓发布了新的文献求助10
14秒前
ding应助这瓜不卖采纳,获得20
14秒前
程克勤完成签到,获得积分10
15秒前
吞拿鱼123完成签到,获得积分10
15秒前
LuLu完成签到,获得积分10
18秒前
19秒前
一心想出文章完成签到,获得积分10
19秒前
21秒前
薰硝壤应助时尚浩轩采纳,获得10
21秒前
热情的清发布了新的文献求助80
22秒前
开放的大侠完成签到,获得积分10
24秒前
吴成完成签到,获得积分10
27秒前
27秒前
田様应助年华采纳,获得10
28秒前
pengxixi50694发布了新的文献求助58
28秒前
冷静的豪发布了新的文献求助10
30秒前
投机倒把完成签到,获得积分20
32秒前
王慧完成签到,获得积分10
32秒前
JK丶LOVE完成签到,获得积分10
34秒前
35秒前
安好完成签到,获得积分20
35秒前
36秒前
IIII完成签到,获得积分10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140824
求助须知:如何正确求助?哪些是违规求助? 2791710
关于积分的说明 7800164
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302313
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210