Construction of Hybrid Deep Learning Model for Predicting Children Behavior based on their Emotional Reaction

人工智能 机器学习 朴素贝叶斯分类器 决策树 计算机科学 随机森林 分类器(UML) 贝叶斯定理 树(集合论) 支持向量机 数学 贝叶斯概率 数学分析
作者
Senthil Kumar T
出处
期刊:Journal of Information Technology and Digital World [Inventive Research Organization]
卷期号:3 (1): 29-43 被引量:48
标识
DOI:10.36548/jitdw.2021.1.004
摘要

Emotion prediction, the sub-domain of sentiment analysis helps to analyze the emotion. Recently, the prediction of children’s behavior based on their present emotional activities is remaining as a challenging task. Henceforth, the deep learning algorithms are used to support and assist in the process of children’s behavior prediction by considering the emotional features with a good accuracy rate. Besides, this article presents the prediction of children’s behavior based on their emotion with the deep learning classifiers method. To analyze the performance, decision tree and naïve Bayes probability model are compared. Totally, 35 sample emotions are considered in the prediction process of deep learning classifier with a probability model. Furthermore, the hybrid emotions are incorporated in the proposed dataset. The comparison between both the decision tree and the Naïve Bayes method has been performed to predict the children’s emotions after the classification. Based on the probability model of naïve Bayes method and decision tree, naïve Bayes method provides good results in terms of recognition rate and prediction accuracy when compared to the decision tree method. Therefore, a fusion of these two algorithms is proposed for predicting the emotions involved in children’s behavior. This research article includes the combined algorithm mathematical proof of prediction based on the emotion samples. This article discusses about the future scope of the proposal and the obtained prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai完成签到 ,获得积分10
1秒前
不配.应助小童小新采纳,获得10
1秒前
张弘发布了新的文献求助10
1秒前
msd2phd完成签到,获得积分10
2秒前
3秒前
aprilvanilla应助一口饺子采纳,获得10
3秒前
3秒前
4秒前
郑chen发布了新的文献求助10
5秒前
5秒前
lc发布了新的文献求助10
5秒前
良辰应助完美的海秋采纳,获得10
8秒前
LIKUN完成签到,获得积分10
8秒前
梦幻发布了新的文献求助10
9秒前
江月林风发布了新的文献求助10
9秒前
云舒发布了新的文献求助10
10秒前
萧水白应助oioi采纳,获得10
11秒前
凌风完成签到,获得积分10
13秒前
15秒前
鲤小鱼完成签到,获得积分10
16秒前
科研通AI2S应助咸鱼一号采纳,获得20
18秒前
18秒前
小羊完成签到,获得积分10
20秒前
fat完成签到 ,获得积分10
20秒前
满天星完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助臭臭采纳,获得10
22秒前
科研小虫应助shizi采纳,获得10
22秒前
Yjh完成签到,获得积分10
24秒前
24秒前
良辰应助完美的海秋采纳,获得10
25秒前
SXIEONE完成签到 ,获得积分20
25秒前
27秒前
万能图书馆应助wqm采纳,获得10
27秒前
polarisla完成签到 ,获得积分10
28秒前
华仔应助阿斯顿风格采纳,获得10
31秒前
苹果蜗牛完成签到 ,获得积分10
32秒前
32秒前
脑洞疼应助wkwwkwkwk采纳,获得10
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243773
求助须知:如何正确求助?哪些是违规求助? 2887609
关于积分的说明 8249256
捐赠科研通 2556298
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794