Generative Adversarial Networks (GANs)

计算机科学 生成语法 对抗制 分类学(生物学) 钥匙(锁) 人工智能 机器学习 领域(数学) 班级(哲学) 数据科学 植物 计算机安全 数学 纯数学 生物
作者
Divya Saxena,Jiannong Cao
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (3): 1-42 被引量:245
标识
DOI:10.1145/3446374
摘要

Generative Adversarial Networks (GANs) is a novel class of deep generative models that has recently gained significant attention. GANs learn complex and high-dimensional distributions implicitly over images, audio, and data. However, there exist major challenges in training of GANs, i.e., mode collapse, non-convergence, and instability, due to inappropriate design of network architectre, use of objective function, and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions, and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on the broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present promising research directions in this rapidly growing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sofia发布了新的文献求助60
2秒前
3秒前
橘子姐姐发布了新的文献求助10
4秒前
yanyan完成签到,获得积分10
5秒前
TT完成签到,获得积分10
6秒前
6秒前
了然完成签到 ,获得积分10
7秒前
jxp完成签到,获得积分10
7秒前
jojo完成签到 ,获得积分10
8秒前
8秒前
勤劳落雁完成签到 ,获得积分10
8秒前
11秒前
爆米花应助科研通管家采纳,获得30
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
田様应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
赘婿应助Quzhengkai采纳,获得10
12秒前
sutharsons应助科研通管家采纳,获得30
12秒前
李爱国应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
调研昵称发布了新的文献求助10
13秒前
CodeCraft应助清新的苑博采纳,获得10
14秒前
所所应助Chen采纳,获得10
15秒前
17秒前
17秒前
goldenfleece发布了新的文献求助10
17秒前
怕黑的钥匙完成签到 ,获得积分10
17秒前
zhangsf88完成签到,获得积分10
17秒前
科研通AI5应助科研小能手采纳,获得10
17秒前
乐乐应助热情芷荷采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808