亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[The risk prediction models for occurrence of cervical cancer: a systematic review].

检查表 宫颈癌 医学 科克伦图书馆 荟萃分析 样本量测定 预测建模 梅德林 癌症 统计 计算机科学 内科学 机器学习 数学 心理学 认知心理学 法学 政治学
作者
Bingjie He,W Y Chen,L L Liu,Haiyan Zhu,Haozhe Cheng,Y X Zhang,S F Wang,Siyan Zhan
出处
期刊:PubMed 被引量:3
标识
DOI:10.3760/cma.j.cn112338-20200806-01031
摘要

Objective: To systematically summarize and assess risk prediction models for occurrence of cervical cancer and to provide evidence for selecting the most reliable model for practice, and guide cervical cancer screening. Methods: Two groups of keywords related to cervical cancer and risk prediction model were searched on Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, and Cochrane Library). Original articles that developed or validated risk prediction models and published before November 21, 2019, were selected. Information form was created based on the CHARMS checklist. The PROBAST was used to assess the risk of bias. Results: 12 eligible articles were identified, describing 15 prediction models, of which five were established in China. The predicted outcomes included multiple stages from cervical precancerous lesions to cancer occurrence, i.e., abnormal Pap smear (1), occurrence or recurrence of CIN (9), and occurrence of cervical cancer (5), etc. The most frequently used predictors were HPV infection (12), age (7), smoking (5), and education (5). There were two models using machine learning to develop models. In terms of model performance, the discrimination ranged from 0.53 to 0.87, while only two models assessed the calibration correctly. Only two models were externally validated in Taiwan of China, using people in different periods. All of the models were at high risk of bias, especially in the analysis domain. The problems were concentrated in the improper handling of missing data (13), preliminary evaluation of model performance (13), improper use of internal validation (12), and insufficient sample size (11). In addition, the problems of inconsistency measurements of predictors and outcomes (8) and the flawed report of the use of blindness for outcome measures (8) were also severe. Compared with the other models, the Rothberg (2018) model had relatively high quality. Conclusions: There are a certain number of cervical cancer risk prediction models, but the quality is poor. It is urgent to improve the measurement of predictors and outcomes, the statistical analysis details such as handling missing data and evaluation of model performance and externally validate existing models to better guide screening.目的: 系统评价宫颈癌发病风险预测模型的现况,为实践工作选择最合适的模型提供证据,指导宫颈癌筛查。 方法: 以宫颈癌和风险预测模型相关的两组中英文关键词,分别检索中国知网、万方数据知识服务平台及PubMed、Embase、Cochrane Library,筛选截至2019年11月21日发表构建或验证宫颈癌发病模型相关文献。根据CHARMS清单制定提取表,以PROBAST工具评估偏倚风险。 结果: 共纳入12篇文献,涉及15个模型,其中5个模型在中国构建。预测结局包含从宫颈癌前病变到癌症发生的多个阶段宫颈涂片异常(1)、CIN的发生或复发(9)、宫颈癌发生(5)。使用较多的预测因素为HPV感染(12)、年龄(7)、吸烟(5)和文化程度(5)。有2个模型采用机器学习建模。模型表现上,区分度范围为0.53~0.87,而校准度只有2个模型正确评价。仅2个模型在中国台湾地区利用不同时间段的人群进行了外部验证。偏倚风险评价发现所有模型均为高风险,尤其分析领域,问题集中在缺失数据处理不当(13)、模型表现评价不完整(13)、内部验证使用不当(12)和样本量不足(11)。另外,预测因素和结局测量不一致(8)、结局测量盲法使用情况未报告(8)的问题较突出。相对而言,Rothberg等(2018)的模型质量较高。 结论: 宫颈癌发病风险预测模型有一定数量但质量较差,亟须提高预测因素与结局的测量以及缺失数据处理和模型表现评价等统计分析细节,对现有模型进行外部验证,以更好地指导筛查。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
1秒前
Akitten完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
GingerF应助科研通管家采纳,获得10
21秒前
GingerF应助科研通管家采纳,获得20
21秒前
GingerF应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
MchemG应助科研通管家采纳,获得30
21秒前
大胆梦容关注了科研通微信公众号
29秒前
Xw关闭了Xw文献求助
32秒前
Plum22驳回了Lucas应助
43秒前
李健的粉丝团团长应助kohu采纳,获得10
1分钟前
qq完成签到,获得积分10
1分钟前
思源应助Akitten采纳,获得30
1分钟前
1分钟前
1分钟前
童大大发布了新的文献求助10
1分钟前
淡漠发布了新的文献求助10
1分钟前
廖庭毅完成签到,获得积分20
1分钟前
汉堡包应助wen采纳,获得10
1分钟前
秋天完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
NexusExplorer应助Luo采纳,获得10
2分钟前
2分钟前
Luo发布了新的文献求助10
2分钟前
wintersss完成签到,获得积分10
2分钟前
2分钟前
Plum22发布了新的文献求助20
2分钟前
廖庭毅发布了新的文献求助10
2分钟前
3分钟前
3分钟前
山是山三十三完成签到 ,获得积分10
3分钟前
核桃发布了新的文献求助10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
杨怂怂完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990105
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228