[The risk prediction models for occurrence of cervical cancer: a systematic review].

检查表 宫颈癌 医学 科克伦图书馆 荟萃分析 样本量测定 预测建模 梅德林 癌症 统计 计算机科学 内科学 机器学习 数学 心理学 认知心理学 法学 政治学
作者
Bingjie He,W Y Chen,L L Liu,Haiyan Zhu,Haozhe Cheng,Y X Zhang,S F Wang,Siyan Zhan
出处
期刊:PubMed 被引量:3
标识
DOI:10.3760/cma.j.cn112338-20200806-01031
摘要

Objective: To systematically summarize and assess risk prediction models for occurrence of cervical cancer and to provide evidence for selecting the most reliable model for practice, and guide cervical cancer screening. Methods: Two groups of keywords related to cervical cancer and risk prediction model were searched on Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, and Cochrane Library). Original articles that developed or validated risk prediction models and published before November 21, 2019, were selected. Information form was created based on the CHARMS checklist. The PROBAST was used to assess the risk of bias. Results: 12 eligible articles were identified, describing 15 prediction models, of which five were established in China. The predicted outcomes included multiple stages from cervical precancerous lesions to cancer occurrence, i.e., abnormal Pap smear (1), occurrence or recurrence of CIN (9), and occurrence of cervical cancer (5), etc. The most frequently used predictors were HPV infection (12), age (7), smoking (5), and education (5). There were two models using machine learning to develop models. In terms of model performance, the discrimination ranged from 0.53 to 0.87, while only two models assessed the calibration correctly. Only two models were externally validated in Taiwan of China, using people in different periods. All of the models were at high risk of bias, especially in the analysis domain. The problems were concentrated in the improper handling of missing data (13), preliminary evaluation of model performance (13), improper use of internal validation (12), and insufficient sample size (11). In addition, the problems of inconsistency measurements of predictors and outcomes (8) and the flawed report of the use of blindness for outcome measures (8) were also severe. Compared with the other models, the Rothberg (2018) model had relatively high quality. Conclusions: There are a certain number of cervical cancer risk prediction models, but the quality is poor. It is urgent to improve the measurement of predictors and outcomes, the statistical analysis details such as handling missing data and evaluation of model performance and externally validate existing models to better guide screening.目的: 系统评价宫颈癌发病风险预测模型的现况,为实践工作选择最合适的模型提供证据,指导宫颈癌筛查。 方法: 以宫颈癌和风险预测模型相关的两组中英文关键词,分别检索中国知网、万方数据知识服务平台及PubMed、Embase、Cochrane Library,筛选截至2019年11月21日发表构建或验证宫颈癌发病模型相关文献。根据CHARMS清单制定提取表,以PROBAST工具评估偏倚风险。 结果: 共纳入12篇文献,涉及15个模型,其中5个模型在中国构建。预测结局包含从宫颈癌前病变到癌症发生的多个阶段宫颈涂片异常(1)、CIN的发生或复发(9)、宫颈癌发生(5)。使用较多的预测因素为HPV感染(12)、年龄(7)、吸烟(5)和文化程度(5)。有2个模型采用机器学习建模。模型表现上,区分度范围为0.53~0.87,而校准度只有2个模型正确评价。仅2个模型在中国台湾地区利用不同时间段的人群进行了外部验证。偏倚风险评价发现所有模型均为高风险,尤其分析领域,问题集中在缺失数据处理不当(13)、模型表现评价不完整(13)、内部验证使用不当(12)和样本量不足(11)。另外,预测因素和结局测量不一致(8)、结局测量盲法使用情况未报告(8)的问题较突出。相对而言,Rothberg等(2018)的模型质量较高。 结论: 宫颈癌发病风险预测模型有一定数量但质量较差,亟须提高预测因素与结局的测量以及缺失数据处理和模型表现评价等统计分析细节,对现有模型进行外部验证,以更好地指导筛查。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liukang172发布了新的文献求助10
2秒前
嘿嘿嘿完成签到,获得积分10
4秒前
666完成签到 ,获得积分10
5秒前
哈哈完成签到,获得积分10
5秒前
6秒前
Lucas应助真找不到采纳,获得10
7秒前
AixGnad完成签到,获得积分10
9秒前
leek完成签到 ,获得积分10
10秒前
曾经的慕灵完成签到,获得积分10
11秒前
河西完成签到,获得积分10
13秒前
阿然完成签到,获得积分10
13秒前
jsdiohfsiodhg完成签到,获得积分10
13秒前
爱学习的小花生完成签到,获得积分10
15秒前
JYing完成签到 ,获得积分10
16秒前
eating完成签到,获得积分10
17秒前
随机完成签到,获得积分10
17秒前
19秒前
科研通AI5应助doubles采纳,获得10
19秒前
兮颜完成签到,获得积分10
20秒前
WFLLL完成签到,获得积分10
20秒前
胖丁完成签到,获得积分10
21秒前
坚强怀绿完成签到,获得积分10
21秒前
这课题真顺利完成签到 ,获得积分10
24秒前
wanmiao12发布了新的文献求助10
25秒前
含蓄听南完成签到 ,获得积分10
27秒前
keyan完成签到,获得积分10
27秒前
Jhinnnn完成签到,获得积分10
27秒前
暖羊羊Y完成签到 ,获得积分10
27秒前
30秒前
Kelly1426完成签到,获得积分10
31秒前
褚明雪发布了新的文献求助10
33秒前
爱笑孤容完成签到,获得积分10
33秒前
追寻青柏完成签到,获得积分10
33秒前
sungcin完成签到,获得积分10
34秒前
妙奇完成签到,获得积分10
34秒前
漠mo完成签到 ,获得积分10
34秒前
真真完成签到 ,获得积分10
36秒前
千寒完成签到,获得积分10
36秒前
顺其自然完成签到 ,获得积分10
36秒前
上官若男应助fate采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280685
关于积分的说明 10020554
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668