[The risk prediction models for occurrence of cervical cancer: a systematic review].

检查表 宫颈癌 医学 科克伦图书馆 荟萃分析 样本量测定 预测建模 梅德林 癌症 统计 计算机科学 内科学 机器学习 数学 心理学 认知心理学 法学 政治学
作者
Bingjie He,W Y Chen,L L Liu,Haiyan Zhu,Haozhe Cheng,Y X Zhang,S F Wang,Siyan Zhan
出处
期刊:PubMed 被引量:3
标识
DOI:10.3760/cma.j.cn112338-20200806-01031
摘要

Objective: To systematically summarize and assess risk prediction models for occurrence of cervical cancer and to provide evidence for selecting the most reliable model for practice, and guide cervical cancer screening. Methods: Two groups of keywords related to cervical cancer and risk prediction model were searched on Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, and Cochrane Library). Original articles that developed or validated risk prediction models and published before November 21, 2019, were selected. Information form was created based on the CHARMS checklist. The PROBAST was used to assess the risk of bias. Results: 12 eligible articles were identified, describing 15 prediction models, of which five were established in China. The predicted outcomes included multiple stages from cervical precancerous lesions to cancer occurrence, i.e., abnormal Pap smear (1), occurrence or recurrence of CIN (9), and occurrence of cervical cancer (5), etc. The most frequently used predictors were HPV infection (12), age (7), smoking (5), and education (5). There were two models using machine learning to develop models. In terms of model performance, the discrimination ranged from 0.53 to 0.87, while only two models assessed the calibration correctly. Only two models were externally validated in Taiwan of China, using people in different periods. All of the models were at high risk of bias, especially in the analysis domain. The problems were concentrated in the improper handling of missing data (13), preliminary evaluation of model performance (13), improper use of internal validation (12), and insufficient sample size (11). In addition, the problems of inconsistency measurements of predictors and outcomes (8) and the flawed report of the use of blindness for outcome measures (8) were also severe. Compared with the other models, the Rothberg (2018) model had relatively high quality. Conclusions: There are a certain number of cervical cancer risk prediction models, but the quality is poor. It is urgent to improve the measurement of predictors and outcomes, the statistical analysis details such as handling missing data and evaluation of model performance and externally validate existing models to better guide screening.目的: 系统评价宫颈癌发病风险预测模型的现况,为实践工作选择最合适的模型提供证据,指导宫颈癌筛查。 方法: 以宫颈癌和风险预测模型相关的两组中英文关键词,分别检索中国知网、万方数据知识服务平台及PubMed、Embase、Cochrane Library,筛选截至2019年11月21日发表构建或验证宫颈癌发病模型相关文献。根据CHARMS清单制定提取表,以PROBAST工具评估偏倚风险。 结果: 共纳入12篇文献,涉及15个模型,其中5个模型在中国构建。预测结局包含从宫颈癌前病变到癌症发生的多个阶段宫颈涂片异常(1)、CIN的发生或复发(9)、宫颈癌发生(5)。使用较多的预测因素为HPV感染(12)、年龄(7)、吸烟(5)和文化程度(5)。有2个模型采用机器学习建模。模型表现上,区分度范围为0.53~0.87,而校准度只有2个模型正确评价。仅2个模型在中国台湾地区利用不同时间段的人群进行了外部验证。偏倚风险评价发现所有模型均为高风险,尤其分析领域,问题集中在缺失数据处理不当(13)、模型表现评价不完整(13)、内部验证使用不当(12)和样本量不足(11)。另外,预测因素和结局测量不一致(8)、结局测量盲法使用情况未报告(8)的问题较突出。相对而言,Rothberg等(2018)的模型质量较高。 结论: 宫颈癌发病风险预测模型有一定数量但质量较差,亟须提高预测因素与结局的测量以及缺失数据处理和模型表现评价等统计分析细节,对现有模型进行外部验证,以更好地指导筛查。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助张子珍采纳,获得10
刚刚
搜集达人应助谭平采纳,获得10
刚刚
eric发布了新的文献求助10
刚刚
树林红了完成签到,获得积分10
1秒前
kkk完成签到,获得积分10
2秒前
scoupsss完成签到,获得积分10
2秒前
阿阮发布了新的文献求助10
2秒前
2秒前
敏er给敏er的求助进行了留言
3秒前
赘婿应助执着的若灵采纳,获得10
3秒前
陈乔乔完成签到 ,获得积分10
3秒前
烟花应助仁爱元冬采纳,获得10
3秒前
陈ZQ发布了新的文献求助10
4秒前
轻雨发布了新的文献求助10
4秒前
5秒前
哈哈哈完成签到 ,获得积分10
5秒前
摩卡桃桃冰完成签到,获得积分10
5秒前
orixero应助萧壹采纳,获得10
5秒前
赘婿应助沉默星月采纳,获得10
6秒前
6秒前
李rh完成签到 ,获得积分10
7秒前
科研通AI6应助eric采纳,获得10
7秒前
7秒前
深情安青应助朱颜采纳,获得10
7秒前
7秒前
8秒前
8秒前
chrisliu完成签到,获得积分10
8秒前
8秒前
酸萝卜完成签到,获得积分10
8秒前
Owen应助kepwake采纳,获得20
8秒前
wanwusheng完成签到,获得积分10
9秒前
9秒前
9秒前
猪肉超人菜婴蚊完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
10秒前
棕棕完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257834
求助须知:如何正确求助?哪些是违规求助? 4419879
关于积分的说明 13758101
捐赠科研通 4293370
什么是DOI,文献DOI怎么找? 2355867
邀请新用户注册赠送积分活动 1352349
关于科研通互助平台的介绍 1313086