[The risk prediction models for occurrence of cervical cancer: a systematic review].

检查表 宫颈癌 医学 科克伦图书馆 荟萃分析 样本量测定 预测建模 梅德林 癌症 统计 计算机科学 内科学 机器学习 数学 心理学 认知心理学 法学 政治学
作者
Bingjie He,W Y Chen,L L Liu,Haiyan Zhu,Haozhe Cheng,Y X Zhang,S F Wang,Siyan Zhan
出处
期刊:PubMed 被引量:3
标识
DOI:10.3760/cma.j.cn112338-20200806-01031
摘要

Objective: To systematically summarize and assess risk prediction models for occurrence of cervical cancer and to provide evidence for selecting the most reliable model for practice, and guide cervical cancer screening. Methods: Two groups of keywords related to cervical cancer and risk prediction model were searched on Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, and Cochrane Library). Original articles that developed or validated risk prediction models and published before November 21, 2019, were selected. Information form was created based on the CHARMS checklist. The PROBAST was used to assess the risk of bias. Results: 12 eligible articles were identified, describing 15 prediction models, of which five were established in China. The predicted outcomes included multiple stages from cervical precancerous lesions to cancer occurrence, i.e., abnormal Pap smear (1), occurrence or recurrence of CIN (9), and occurrence of cervical cancer (5), etc. The most frequently used predictors were HPV infection (12), age (7), smoking (5), and education (5). There were two models using machine learning to develop models. In terms of model performance, the discrimination ranged from 0.53 to 0.87, while only two models assessed the calibration correctly. Only two models were externally validated in Taiwan of China, using people in different periods. All of the models were at high risk of bias, especially in the analysis domain. The problems were concentrated in the improper handling of missing data (13), preliminary evaluation of model performance (13), improper use of internal validation (12), and insufficient sample size (11). In addition, the problems of inconsistency measurements of predictors and outcomes (8) and the flawed report of the use of blindness for outcome measures (8) were also severe. Compared with the other models, the Rothberg (2018) model had relatively high quality. Conclusions: There are a certain number of cervical cancer risk prediction models, but the quality is poor. It is urgent to improve the measurement of predictors and outcomes, the statistical analysis details such as handling missing data and evaluation of model performance and externally validate existing models to better guide screening.目的: 系统评价宫颈癌发病风险预测模型的现况,为实践工作选择最合适的模型提供证据,指导宫颈癌筛查。 方法: 以宫颈癌和风险预测模型相关的两组中英文关键词,分别检索中国知网、万方数据知识服务平台及PubMed、Embase、Cochrane Library,筛选截至2019年11月21日发表构建或验证宫颈癌发病模型相关文献。根据CHARMS清单制定提取表,以PROBAST工具评估偏倚风险。 结果: 共纳入12篇文献,涉及15个模型,其中5个模型在中国构建。预测结局包含从宫颈癌前病变到癌症发生的多个阶段宫颈涂片异常(1)、CIN的发生或复发(9)、宫颈癌发生(5)。使用较多的预测因素为HPV感染(12)、年龄(7)、吸烟(5)和文化程度(5)。有2个模型采用机器学习建模。模型表现上,区分度范围为0.53~0.87,而校准度只有2个模型正确评价。仅2个模型在中国台湾地区利用不同时间段的人群进行了外部验证。偏倚风险评价发现所有模型均为高风险,尤其分析领域,问题集中在缺失数据处理不当(13)、模型表现评价不完整(13)、内部验证使用不当(12)和样本量不足(11)。另外,预测因素和结局测量不一致(8)、结局测量盲法使用情况未报告(8)的问题较突出。相对而言,Rothberg等(2018)的模型质量较高。 结论: 宫颈癌发病风险预测模型有一定数量但质量较差,亟须提高预测因素与结局的测量以及缺失数据处理和模型表现评价等统计分析细节,对现有模型进行外部验证,以更好地指导筛查。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
化工牛马完成签到,获得积分10
1秒前
罗马没有马完成签到 ,获得积分10
2秒前
兹恩完成签到,获得积分10
3秒前
忧虑的静柏完成签到 ,获得积分10
3秒前
化工牛马发布了新的文献求助20
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得50
6秒前
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得50
6秒前
NexusExplorer应助科研通管家采纳,获得50
7秒前
Hello应助科研通管家采纳,获得10
7秒前
正己化人应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
犹豫的若完成签到,获得积分10
9秒前
无敌脉冲黄桃完成签到,获得积分20
11秒前
田様应助zmy采纳,获得10
13秒前
locker完成签到 ,获得积分10
15秒前
多情赛君完成签到 ,获得积分10
16秒前
上杉绘梨衣完成签到,获得积分10
20秒前
断了的弦完成签到,获得积分10
20秒前
陶醉的小海豚完成签到,获得积分10
23秒前
asdfgjjul完成签到,获得积分10
25秒前
活泼红牛完成签到,获得积分10
26秒前
WangJL完成签到 ,获得积分10
28秒前
30秒前
一一完成签到,获得积分10
31秒前
liujianxin发布了新的文献求助10
31秒前
zmy发布了新的文献求助10
34秒前
小二郎应助crabbbb68采纳,获得10
34秒前
mzhmhy完成签到,获得积分10
34秒前
搞怪的白云完成签到 ,获得积分10
35秒前
小巧的白竹完成签到,获得积分10
37秒前
想发一篇贾克斯完成签到,获得积分10
37秒前
kryptonite完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910766
求助须知:如何正确求助?哪些是违规求助? 4186429
关于积分的说明 12999659
捐赠科研通 3953947
什么是DOI,文献DOI怎么找? 2168228
邀请新用户注册赠送积分活动 1186607
关于科研通互助平台的介绍 1093874