A Comparative Empirical Study of Discrete Choice Models in Retail Operations

多项式logistic回归 计算机科学 离散选择 收益管理 混合逻辑 选择集 马尔可夫链 任务(项目管理) 数学优化 计量经济学 收入 运筹学 逻辑回归 经济 数学 机器学习 会计 管理
作者
Gerardo Berbeglia,Agustín Garassino,Gustavo Vulcano
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4005-4023 被引量:55
标识
DOI:10.1287/mnsc.2021.4069
摘要

Choice-based demand estimation is a fundamental task in retail operations and revenue management, providing necessary input data for inventory control, assortment, and price-optimization models. The task is particularly difficult in operational contexts where product availability varies over time and customers may substitute into the available options. In addition to the classical multinomial logit (MNL) model and extensions (e.g., nested logit, mixed logit, and latent-class MNL), new demand models have been proposed (e.g., the Markov chain model), and others have been recently revisited (e.g., the rank list-based and exponomial models). At the same time, new computational approaches were developed to ease the estimation function (e.g., column-generation and expectation-maximization (EM) algorithms). In this paper, we conduct a systematic, empirical study of different choice-based demand models and estimation algorithms, including both maximum-likelihood and least-squares criteria. Through an exhaustive set of numerical experiments on synthetic, semisynthetic, and real data, we provide comparative statistics of the predictive power and derived revenue performance of an ample collection of choice models and characterize operational environments suitable for different model/estimation implementations. We also provide a survey of all the discrete choice models evaluated and share all our estimation codes and data sets as part of the online appendix. This paper was accepted by Vishal Gaur, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐惜芹完成签到,获得积分10
1秒前
斯文败类应助大大小小采纳,获得10
1秒前
春一又木完成签到,获得积分10
1秒前
1秒前
研友_6n0P7n完成签到,获得积分10
2秒前
3秒前
埋头苦干科研完成签到,获得积分10
4秒前
4秒前
4秒前
Della发布了新的文献求助10
5秒前
Bake完成签到,获得积分10
5秒前
YY发布了新的文献求助10
5秒前
5秒前
kd发布了新的文献求助10
6秒前
几酌应助摆烂采纳,获得20
6秒前
嘻嘻完成签到,获得积分10
7秒前
7秒前
zsk1122发布了新的文献求助10
7秒前
慕青应助13223456采纳,获得10
8秒前
9秒前
科研小狗完成签到 ,获得积分10
9秒前
misong发布了新的文献求助10
9秒前
WH发布了新的文献求助10
11秒前
moncypool发布了新的文献求助10
11秒前
斯文败类应助梦飞采纳,获得10
11秒前
12秒前
14秒前
卢文君完成签到,获得积分10
14秒前
Gauss完成签到,获得积分0
15秒前
kd完成签到,获得积分10
15秒前
搜集达人应助Maestro_S采纳,获得30
15秒前
17秒前
海派Hi完成签到 ,获得积分10
17秒前
17秒前
酷波er应助WH采纳,获得10
17秒前
17秒前
JamesPei应助YY采纳,获得10
19秒前
1234567xjy完成签到,获得积分20
21秒前
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760