铁转运蛋白
内科学
心肌病
内分泌学
心力衰竭
医学
地中海贫血
红细胞生成
氧化应激
血色病
遗传性血色病
压力过载
心功能曲线
贫血
海西定
心肌肥大
作者
Enrica Federti,Francesca Vinchi,Iana Iatcenko,Alessandra Ghigo,Alessandro Mattè,Serge Cedrick,Angela Siciliano,Deborah Chiabrando,Emanuela Tolosano,S. Zebulon Vance,Veronica Riccardi,Immacolata Andolfo,Achille Iolascon,Lucia De Franceschi
出处
期刊:Blood
[American Society of Hematology]
日期:2021-11-05
卷期号:138 (Supplement 1): 3068-3068
标识
DOI:10.1182/blood-2021-146157
摘要
Abstract Cardiomyopathy due to iron-overload is a severe complication of patients undergoing chronic transfusion regimen such as β-thalassemia and myelodysplastic syndromes. Previous studies have shown the key role of Nrf2, a redox-related transcriptional factor, in both β-thalassemia erythropoiesis and iron homeostasis (Matte A et al. ARS 2018, 2019; Lim PJ et al Nat Metab, 2019). Here, we compared Nrf2 knockout male mice (Nrf2 -/-) and C57BL-6J as wild-type (WT) controls, with a focus on cardiac function. Nrf2 -/- mice were characterized by a mild chronic hemolytic anemia associated with ineffective erythropoiesis, similar to what observed in murineβ-thalassemia (Toya SCM et al., Blood, 2019). Aging Nrf2 -/- mice developed systolic and diastolic dysfunction, associated with increased cardiac oxidative stress, degradation of the calcium-dependent SERCA2A transporter and activation of metalloproteinase MMP9, involved in both SERCA2A degradation and heart remodeling. In Nrf2 -/- mice, we observed increased plasma NTBI, heart iron deposition and elevated expression of cardiac ferroportin when compared to WT animals. Moreover, cardiac Hamp mRNA levels were down-regulated in aging Nrf2 -/- mice when compared to WT mice. This pattern was consistent with progressive cardiac iron overload in absence of Nrf2. Interestingly, activation of TGF-b receptor and PDGF-B-related pathway as well as increased collagen deposition were observed in hearts from 12 months old Nrf2 -/- mice. Taken together our data suggest an aging-associated development of iron-overload cardiomyopathy in mice genetically lacking Nrf2. To evaluate the role of Nrf2 in iron overload cardiomyopathy, Nrf2 -/- and WT mice were exposed to dietary iron supplementation (2.5% w/w carbonyl iron for 28 days). Nrf2 -/- mice developed cardiac hypertrophy which was accompanied by a worsening in collagen deposition and persistent activation of PDGF-B pathway. This was associated with inflammatory vasculopathy. The biologic importance of Nrf2 is supported by the cardiac activation of Nrf2, degradation of SERC2A and activation of TGF-b receptor and PDGF-B pathway in a mouse model of beta thalassemia intermedia, the Hbb3th/+ mice. Collectively our data support the crucial role of Nrf2 in the protection of cardiomyocytes against iron cytotoxicity which significantly develops in aging as well as in β-thalassemia. Disclosures Vinchi: Silence Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Vifor Pharma: Research Funding; PharmaNutra: Research Funding; Novartis: Research Funding. Ghigo: Kither Biotech: Other: Board member and Co-Founder. Iolascon: Bluebird Bio: Other: Advisory Board; Celgene: Other: Advisory Board.
科研通智能强力驱动
Strongly Powered by AbleSci AI