Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in Complex Environments From High-Resolution Remote-Sensing Images

计算机科学 遥感 特征提取 人工智能 图形 索贝尔算子 分割 深度学习 卷积神经网络 模式识别(心理学) 计算机视觉 图像处理 图像(数学) 边缘检测 地理 理论计算机科学
作者
Gaodian Zhou,Weitao Chen,Qianshan Gui,Xianju Li,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:102
标识
DOI:10.1109/tgrs.2021.3128033
摘要

Road information from high-resolution remote-sensing images is widely used in various fields, and deep-learning-based methods have effectively shown high road-extraction performance. However, for the detection of roads sealed with tarmac, or covered by trees in high-resolution remote-sensing images, some challenges still limit the accuracy of extraction: 1) large intraclass differences between roads and unclear interclass differences between urban objects, especially roads and buildings; 2) roads occluded by trees, shadows, and buildings are difficult to extract; and 3) lack of high-precision remote-sensing datasets for roads. To increase the accuracy of road extraction from high-resolution remote-sensing images, we propose a split depth-wise (DW) separable graph convolutional network (SGCN). First, we split DW-separable convolution to obtain channel and spatial features, to enhance the expression ability of road features. Thereafter, we present a graph convolutional network to capture global contextual road information in channel and spatial features. The Sobel gradient operator is used to construct an adjacency matrix of the feature graph. A total of 13 deep-learning networks were used on the Massachusetts roads dataset and nine on our self-constructed mountain road dataset, for comparison with our proposed SGCN. Our model achieved a mean intersection over union (mIOU) of 81.65% with an F1-score of 78.99% for the Massachusetts roads dataset, and an mIOU of 62.45% with an F1-score of 45.06% for our proposed dataset. The visualization results showed that SGCN performs better in extracting covered and tiny roads and is able to effectively extract roads from high-resolution remote-sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗实发布了新的文献求助10
1秒前
1秒前
大模型应助LL采纳,获得10
1秒前
33333发布了新的文献求助10
1秒前
自觉秋发布了新的文献求助10
2秒前
啱啱完成签到,获得积分10
2秒前
在水一方应助呆萌的秋天采纳,获得10
2秒前
暴打小猪仔完成签到,获得积分10
2秒前
王w完成签到 ,获得积分10
3秒前
4秒前
5秒前
南瓜咸杏完成签到,获得积分10
5秒前
陈甸甸完成签到,获得积分10
5秒前
韦威风发布了新的文献求助10
6秒前
6秒前
king完成签到,获得积分10
6秒前
qweerrtt发布了新的文献求助10
7秒前
余三浪完成签到,获得积分10
7秒前
8秒前
lixoii发布了新的文献求助20
8秒前
豌豆射手发布了新的文献求助10
9秒前
科研通AI2S应助k7采纳,获得10
9秒前
wszldmn完成签到,获得积分10
9秒前
坚定的亦绿完成签到,获得积分10
10秒前
10秒前
yurh完成签到,获得积分10
10秒前
小朋友完成签到,获得积分10
11秒前
华仔应助小王采纳,获得10
11秒前
彭于晏应助乔乔采纳,获得10
11秒前
11秒前
1199完成签到,获得积分10
11秒前
11秒前
南瓜完成签到 ,获得积分10
12秒前
eric曾完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
韦威风完成签到,获得积分10
15秒前
请叫我风吹麦浪应助cc采纳,获得30
15秒前
所所应助Ll采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762