计算机科学
遥感
特征提取
人工智能
图形
索贝尔算子
分割
深度学习
图像分辨率
卷积神经网络
模式识别(心理学)
计算机视觉
图像处理
图像(数学)
边缘检测
地理
理论计算机科学
作者
Gaodian Zhou,Weitao Chen,Qianshan Gui,Xianju Li,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-15
被引量:75
标识
DOI:10.1109/tgrs.2021.3128033
摘要
Road information from high-resolution remote-sensing images is widely used in various fields, and deep-learning-based methods have effectively shown high road-extraction performance. However, for the detection of roads sealed with tarmac, or covered by trees in high-resolution remote-sensing images, some challenges still limit the accuracy of extraction: 1) large intraclass differences between roads and unclear interclass differences between urban objects, especially roads and buildings; 2) roads occluded by trees, shadows, and buildings are difficult to extract; and 3) lack of high-precision remote-sensing datasets for roads. To increase the accuracy of road extraction from high-resolution remote-sensing images, we propose a split depth-wise (DW) separable graph convolutional network (SGCN). First, we split DW-separable convolution to obtain channel and spatial features, to enhance the expression ability of road features. Thereafter, we present a graph convolutional network to capture global contextual road information in channel and spatial features. The Sobel gradient operator is used to construct an adjacency matrix of the feature graph. A total of 13 deep-learning networks were used on the Massachusetts roads dataset and nine on our self-constructed mountain road dataset, for comparison with our proposed SGCN. Our model achieved a mean intersection over union (mIOU) of 81.65% with an F1-score of 78.99% for the Massachusetts roads dataset, and an mIOU of 62.45% with an F1-score of 45.06% for our proposed dataset. The visualization results showed that SGCN performs better in extracting covered and tiny roads and is able to effectively extract roads from high-resolution remote-sensing images.
科研通智能强力驱动
Strongly Powered by AbleSci AI