Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in Complex Environments From High-Resolution Remote-Sensing Images

计算机科学 遥感 特征提取 人工智能 图形 索贝尔算子 分割 深度学习 卷积神经网络 模式识别(心理学) 计算机视觉 图像处理 图像(数学) 边缘检测 地理 理论计算机科学
作者
Gaodian Zhou,Weitao Chen,Qianshan Gui,Xianju Li,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:111
标识
DOI:10.1109/tgrs.2021.3128033
摘要

Road information from high-resolution remote-sensing images is widely used in various fields, and deep-learning-based methods have effectively shown high road-extraction performance. However, for the detection of roads sealed with tarmac, or covered by trees in high-resolution remote-sensing images, some challenges still limit the accuracy of extraction: 1) large intraclass differences between roads and unclear interclass differences between urban objects, especially roads and buildings; 2) roads occluded by trees, shadows, and buildings are difficult to extract; and 3) lack of high-precision remote-sensing datasets for roads. To increase the accuracy of road extraction from high-resolution remote-sensing images, we propose a split depth-wise (DW) separable graph convolutional network (SGCN). First, we split DW-separable convolution to obtain channel and spatial features, to enhance the expression ability of road features. Thereafter, we present a graph convolutional network to capture global contextual road information in channel and spatial features. The Sobel gradient operator is used to construct an adjacency matrix of the feature graph. A total of 13 deep-learning networks were used on the Massachusetts roads dataset and nine on our self-constructed mountain road dataset, for comparison with our proposed SGCN. Our model achieved a mean intersection over union (mIOU) of 81.65% with an F1-score of 78.99% for the Massachusetts roads dataset, and an mIOU of 62.45% with an F1-score of 45.06% for our proposed dataset. The visualization results showed that SGCN performs better in extracting covered and tiny roads and is able to effectively extract roads from high-resolution remote-sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
maomao完成签到,获得积分10
7秒前
搜集达人应助合适背包采纳,获得10
7秒前
blue发布了新的文献求助10
8秒前
9秒前
GibsonYu发布了新的文献求助10
9秒前
10秒前
华仔应助taoatao采纳,获得10
12秒前
maomao发布了新的文献求助10
12秒前
13秒前
wch666发布了新的文献求助10
15秒前
19秒前
一个快乐的吃货完成签到,获得积分10
20秒前
hhhblabla应助细腻的依萱采纳,获得20
20秒前
24秒前
Jgogo发布了新的文献求助10
24秒前
taoatao发布了新的文献求助10
24秒前
阿蒙完成签到,获得积分10
25秒前
赘婿应助爱学习的曼卉采纳,获得10
27秒前
orixero应助典雅储采纳,获得10
29秒前
Bethune发布了新的文献求助10
30秒前
打打应助Chillym采纳,获得10
31秒前
真实的语堂完成签到,获得积分10
33秒前
34秒前
明年今日完成签到,获得积分10
37秒前
隐形曼青应助酷炫元风采纳,获得10
37秒前
38秒前
泽爷发布了新的文献求助10
39秒前
闹心发布了新的文献求助10
39秒前
41秒前
打打应助blue采纳,获得10
43秒前
hamburger完成签到 ,获得积分10
44秒前
czj发布了新的文献求助10
46秒前
50秒前
czj完成签到,获得积分10
50秒前
澈竹影发布了新的文献求助20
51秒前
54秒前
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724