Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in Complex Environments From High-Resolution Remote-Sensing Images

计算机科学 遥感 特征提取 人工智能 图形 索贝尔算子 分割 深度学习 卷积神经网络 模式识别(心理学) 计算机视觉 图像处理 图像(数学) 边缘检测 地理 理论计算机科学
作者
Gaodian Zhou,Weitao Chen,Qianshan Gui,Xianju Li,Lizhe Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:116
标识
DOI:10.1109/tgrs.2021.3128033
摘要

Road information from high-resolution remote-sensing images is widely used in various fields, and deep-learning-based methods have effectively shown high road-extraction performance. However, for the detection of roads sealed with tarmac, or covered by trees in high-resolution remote-sensing images, some challenges still limit the accuracy of extraction: 1) large intraclass differences between roads and unclear interclass differences between urban objects, especially roads and buildings; 2) roads occluded by trees, shadows, and buildings are difficult to extract; and 3) lack of high-precision remote-sensing datasets for roads. To increase the accuracy of road extraction from high-resolution remote-sensing images, we propose a split depth-wise (DW) separable graph convolutional network (SGCN). First, we split DW-separable convolution to obtain channel and spatial features, to enhance the expression ability of road features. Thereafter, we present a graph convolutional network to capture global contextual road information in channel and spatial features. The Sobel gradient operator is used to construct an adjacency matrix of the feature graph. A total of 13 deep-learning networks were used on the Massachusetts roads dataset and nine on our self-constructed mountain road dataset, for comparison with our proposed SGCN. Our model achieved a mean intersection over union (mIOU) of 81.65% with an F1-score of 78.99% for the Massachusetts roads dataset, and an mIOU of 62.45% with an F1-score of 45.06% for our proposed dataset. The visualization results showed that SGCN performs better in extracting covered and tiny roads and is able to effectively extract roads from high-resolution remote-sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助蔓越莓子采纳,获得10
刚刚
科研通AI6应助六不六采纳,获得10
刚刚
虾虾完成签到 ,获得积分10
刚刚
亓大大发布了新的文献求助50
刚刚
ZWL发布了新的文献求助10
1秒前
KKKK发布了新的文献求助10
1秒前
深情荆完成签到,获得积分10
1秒前
New完成签到,获得积分10
1秒前
领导范儿应助liguanyu1078采纳,获得30
1秒前
九思发布了新的文献求助10
1秒前
cxd发布了新的文献求助10
2秒前
乐乐应助lxt采纳,获得10
2秒前
张菲菲发布了新的文献求助10
2秒前
JUSTs0so完成签到,获得积分10
2秒前
2秒前
3秒前
white发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
彭于晏应助圣晟胜采纳,获得10
3秒前
starry完成签到,获得积分10
4秒前
flash完成签到,获得积分10
4秒前
5552222完成签到,获得积分10
4秒前
vivi完成签到,获得积分10
5秒前
憯懔完成签到,获得积分10
5秒前
小杭76应助搞怪的老太采纳,获得10
5秒前
等待蜜蜂完成签到,获得积分10
5秒前
求rrr完成签到,获得积分10
5秒前
5秒前
youfan发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
方正发布了新的文献求助10
8秒前
GoodSun完成签到,获得积分0
8秒前
fan发布了新的文献求助10
8秒前
求rrr发布了新的文献求助10
8秒前
麦麦完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5010674
求助须知:如何正确求助?哪些是违规求助? 4252370
关于积分的说明 13250645
捐赠科研通 4054635
什么是DOI,文献DOI怎么找? 2217829
邀请新用户注册赠送积分活动 1227347
关于科研通互助平台的介绍 1149462