MFN2型
下调和上调
生物
线粒体分裂
泛素连接酶
细胞凋亡
线粒体
细胞生物学
线粒体融合
生物化学
泛素
线粒体DNA
基因
作者
Kaidi Ren,Zi-Mei Peng,Jing Tian,Ya-Wei Peng,Yiyue Zhang,Xiaojie Zhang,Zhongyang Hu,Xiu‐Ju Luo,Jun Peng
出处
期刊:Cns & Neurological Disorders-drug Targets
[Bentham Science]
日期:2021-11-18
卷期号:21 (8): 693-703
被引量:8
标识
DOI:10.2174/1871527320666211118143554
摘要
Upregulation of mitochondrial E3 ubiquitin ligase 1 (Mul1) contributes to brain injury in ischemic stroke due to disturbance of mitochondrial dynamics, and bioinformatics analysis predicts that Mul1 is a potential target of Dipsacoside B.The aim of the study was to explore whether Dipsacoside B can exert a beneficial effect on brain injury in the ischemic stroke rat via targeting Mul1.The SD rat brains or PC12 cells were subjected to 2 h-ischemia or 8 h-hypoxia plus 24 h-reperfusion or 24 h-reoxygenation to establish the ischemic stroke rat model in vivo or in vitro, which were treated with Dipsacoside B at different dosages. The brain or PC12 cell injury, relevant protein levels and mitochondrial functions were measured by methods of biochemistry, flow cytometry or Western blot.The neurological dysfunction and brain injury (such as infarction and apoptosis) observed in the ischemic stroke rats were accompanied by increases in Mul1 and Dynamin-related protein 1 (Drp1) levels along with decreases in mitofusin 2 (Mfn2) level and ATP production. These effects were attenuated by Dipsacoside B. Consistently, cell injury (necroptosis and apoptosis) occurred in the PC12 cells exposed to hypoxia concomitant with the upregulation of Mul1 and Drp1 along with downregulation of Mfn2 and mitochondrial functions (such as increases in reactive oxygen species production and mitochondrial fission and decreases in mitochondrial membrane potential and ATP production).These phenomena were reversed in the presence of Dipsacoside B.Dipsacoside B can protect the rat brain against ischemic injury via inhibition of Mul1 due to the improvement of mitochondrial function.
科研通智能强力驱动
Strongly Powered by AbleSci AI