Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems

Bat算法 算法 莱维航班
作者
Serhat Duman,Hamdi Tolga Kahraman,Uğur Güvenç,Sefa Aras
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6577-6617 被引量:2
标识
DOI:10.1007/s00500-021-05654-z
摘要

This article presents an improved version of the coyote optimization algorithm (COA) that is more compatible with nature. In the proposed algorithm, fitness-distance balance (FDB) and Levy flight were used to determine the social tendency of coyote packs and to develop a more effective model imitating the birth of new coyotes. The balanced search performance, global exploration capability, and local exploitation ability of the COA algorithm were enhanced, and the premature convergence problem resolved using these two methods. The performance of the proposed Levy roulette FDB-COA (LRFDBCOA) was compared with 28 other meta-heuristic search (MHS) algorithms to verify its effectiveness on 90 benchmark test functions in different dimensions. The proposed LRFDBCOA and the COA ranked, respectively, the first and the ninth, according to nonparametric statistical results. The proposed algorithm was applied to solve the AC optimal power flow (ACOPF) problem incorporating thermal, wind, and combined solar-small hydro powered energy systems. This problem is described as a constrained, nonconvex, and complex power system optimization problem. The simulation results showed that the proposed algorithm exhibited a definite superiority over both the constrained and highly complex real-world engineering ACOPF problem and the unconstrained convex/nonconvex benchmark problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助x-17采纳,获得20
刚刚
1秒前
2秒前
默默的不二完成签到,获得积分10
2秒前
nini完成签到,获得积分10
2秒前
3秒前
3秒前
dfjeid完成签到,获得积分20
4秒前
6秒前
绝对快乐发布了新的文献求助10
7秒前
柴夫发布了新的文献求助10
8秒前
kekefefe发布了新的文献求助50
9秒前
camelli完成签到 ,获得积分10
9秒前
不安夜雪完成签到 ,获得积分10
10秒前
张张发布了新的文献求助10
11秒前
liusaiya完成签到 ,获得积分10
14秒前
15秒前
Jasper应助张张采纳,获得10
17秒前
19秒前
20秒前
哎呦哎完成签到,获得积分10
21秒前
小王要努力完成签到,获得积分10
21秒前
22秒前
小马甲应助irisxxxx采纳,获得20
22秒前
潜山耕之发布了新的文献求助10
24秒前
BK发布了新的文献求助10
24秒前
小确幸发布了新的文献求助10
25秒前
尘闲发布了新的文献求助10
25秒前
张张完成签到,获得积分10
25秒前
25秒前
27秒前
大模型应助百年孤独采纳,获得10
27秒前
激情的宛白完成签到,获得积分10
28秒前
hy完成签到,获得积分10
28秒前
28秒前
Ling发布了新的文献求助10
28秒前
陈亦可发布了新的文献求助10
30秒前
31秒前
31秒前
路过蜻蜓完成签到,获得积分10
32秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Artificial Intelligence, Co-Creation and Creativity 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
The Neotropical “Polymorphic Earless Praying Mantises”–Part II: Taxonomic Review of the Genera and Checklist of Species (Insecta: Mantodea, Acanthopoidea) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089812
求助须知:如何正确求助?哪些是违规求助? 2741939
关于积分的说明 7567753
捐赠科研通 2392527
什么是DOI,文献DOI怎么找? 1268808
科研通“疑难数据库(出版商)”最低求助积分说明 614174
版权声明 598710