Convolutional Neural Network based Automatic Detection of Visible Faults in a Photovoltaic Module

卷积神经网络 计算机科学 故障检测与隔离 光伏系统 可靠性(半导体) 过程(计算) 人工智能 特征(语言学) 深度学习 断层(地质) 特征提取 模式识别(心理学) 实时计算 功率(物理) 工程类 电气工程 执行机构 语言学 物理 哲学 量子力学 地震学 地质学 操作系统
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-16 被引量:21
标识
DOI:10.1080/15567036.2021.1905753
摘要

Background/Objective: The primary objective of the present study is to distinguish several visual faults which hinder the performance, reliability and lifetime of photovoltaic (PV) modules. Research question: Conventional fault detection techniques require specific operating conditions which also consumed a lot of time, manpower and expenditure. Innovative techniques and technological advancements in the highly paced world expect instant results. Advanced and automatic fault diagnosis is such a process that delivers instant results and guarantees an extended lifetime for numerous critical photovoltaic module (PVM) components. Hypothesis: This study performs an automatic detection of faults in PVM with convolutional neural networks (CNN) that accurately classifies various faults based on the images captured from unmanned aerial vehicles (UAVs). Methodology: Dataset creation is one of the primary constraints when it comes to working with CNN. To overcome this drawback, a data augmentation method is adopted to enlarge the dataset from the limited number of available aerial images of PVM. These augmented images are fed into an automatic fault detection CNN model for deep feature extraction and classification. Results and Conclusion: The presented method exhibits an increase in the accuracy and performance of PVM health monitoring when compared with other conventional solutions. The performances of uniform and non-uniform datasets are also presented. Various pre-trained models like VGG16 and ResNet50 are compared with the proposed solution for performance evaluation. The results demonstrate that the overall classification accuracy of the proposed model for uniform and non-uniform datasets was found to be 95.07% and 94.14% respectively with lesser training time and number of epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助纷扬采纳,获得10
刚刚
Love完成签到,获得积分10
刚刚
rusellw完成签到,获得积分20
刚刚
LY发布了新的文献求助10
刚刚
yangya应助D叫兽采纳,获得10
1秒前
好人一生平安完成签到,获得积分10
1秒前
完美世界应助啦啦啦采纳,获得10
1秒前
zychaos发布了新的文献求助10
2秒前
冷酷初南完成签到,获得积分10
2秒前
2秒前
gqjq完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
一蓑烟雨任平生应助rusellw采纳,获得10
5秒前
cocolu应助Willow采纳,获得10
6秒前
6秒前
牟百完成签到,获得积分20
7秒前
7秒前
7秒前
瓦罐汤完成签到 ,获得积分10
7秒前
swsn完成签到 ,获得积分10
7秒前
7秒前
qqq完成签到,获得积分10
7秒前
fyl完成签到,获得积分10
8秒前
云朵完成签到,获得积分10
8秒前
8秒前
bkagyin应助柠檬采纳,获得10
8秒前
刻苦傲安发布了新的文献求助100
8秒前
伟钧完成签到,获得积分10
9秒前
9秒前
FashionBoy应助AnnieSsy采纳,获得10
9秒前
bofu完成签到,获得积分10
9秒前
JinkFun发布了新的文献求助10
10秒前
10秒前
qqq发布了新的文献求助10
10秒前
lulu123发布了新的文献求助30
10秒前
研友_VZG7GZ应助微笑的秋灵采纳,获得10
11秒前
Maggie完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351