亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network based Automatic Detection of Visible Faults in a Photovoltaic Module

卷积神经网络 计算机科学 故障检测与隔离 光伏系统 可靠性(半导体) 过程(计算) 人工智能 特征(语言学) 深度学习 断层(地质) 特征提取 模式识别(心理学) 实时计算 功率(物理) 工程类 操作系统 电气工程 物理 地质学 哲学 量子力学 地震学 执行机构 语言学
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:: 1-16 被引量:21
标识
DOI:10.1080/15567036.2021.1905753
摘要

Background/Objective: The primary objective of the present study is to distinguish several visual faults which hinder the performance, reliability and lifetime of photovoltaic (PV) modules. Research question: Conventional fault detection techniques require specific operating conditions which also consumed a lot of time, manpower and expenditure. Innovative techniques and technological advancements in the highly paced world expect instant results. Advanced and automatic fault diagnosis is such a process that delivers instant results and guarantees an extended lifetime for numerous critical photovoltaic module (PVM) components. Hypothesis: This study performs an automatic detection of faults in PVM with convolutional neural networks (CNN) that accurately classifies various faults based on the images captured from unmanned aerial vehicles (UAVs). Methodology: Dataset creation is one of the primary constraints when it comes to working with CNN. To overcome this drawback, a data augmentation method is adopted to enlarge the dataset from the limited number of available aerial images of PVM. These augmented images are fed into an automatic fault detection CNN model for deep feature extraction and classification. Results and Conclusion: The presented method exhibits an increase in the accuracy and performance of PVM health monitoring when compared with other conventional solutions. The performances of uniform and non-uniform datasets are also presented. Various pre-trained models like VGG16 and ResNet50 are compared with the proposed solution for performance evaluation. The results demonstrate that the overall classification accuracy of the proposed model for uniform and non-uniform datasets was found to be 95.07% and 94.14% respectively with lesser training time and number of epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
neversay4ever完成签到 ,获得积分10
4秒前
1分钟前
1分钟前
余灿发布了新的文献求助10
1分钟前
1分钟前
余灿完成签到,获得积分20
1分钟前
1分钟前
pharmac完成签到,获得积分10
1分钟前
1分钟前
小唐尼完成签到,获得积分10
2分钟前
2分钟前
YifanWang应助Wei采纳,获得10
2分钟前
朴实迎梅完成签到,获得积分10
3分钟前
3分钟前
科研通AI5应助mmmmmyq采纳,获得10
4分钟前
搜集达人应助Wei采纳,获得10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
4分钟前
mmmmmyq发布了新的文献求助10
4分钟前
4分钟前
Wei发布了新的文献求助10
5分钟前
心灵美语兰完成签到 ,获得积分10
5分钟前
5分钟前
大方的从寒完成签到,获得积分10
5分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
6分钟前
6分钟前
考博上岸26完成签到 ,获得积分10
6分钟前
乘乘完成签到 ,获得积分10
6分钟前
7分钟前
貔貅完成签到 ,获得积分10
7分钟前
安然完成签到 ,获得积分10
8分钟前
爱静静完成签到,获得积分0
8分钟前
woxinyouyou完成签到,获得积分0
8分钟前
成就的热狗完成签到,获得积分20
8分钟前
科研通AI6应助科研通管家采纳,获得30
9分钟前
9分钟前
充电宝应助Jenny采纳,获得10
9分钟前
领导范儿应助Gryphon采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254807
求助须知:如何正确求助?哪些是违规求助? 4417641
关于积分的说明 13751524
捐赠科研通 4290452
什么是DOI,文献DOI怎么找? 2354193
邀请新用户注册赠送积分活动 1350813
关于科研通互助平台的介绍 1311126