Convolutional Neural Network based Automatic Detection of Visible Faults in a Photovoltaic Module

卷积神经网络 计算机科学 故障检测与隔离 光伏系统 可靠性(半导体) 过程(计算) 人工智能 特征(语言学) 深度学习 断层(地质) 特征提取 模式识别(心理学) 实时计算 功率(物理) 工程类 电气工程 执行机构 语言学 物理 哲学 量子力学 地震学 地质学 操作系统
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:: 1-16 被引量:21
标识
DOI:10.1080/15567036.2021.1905753
摘要

Background/Objective: The primary objective of the present study is to distinguish several visual faults which hinder the performance, reliability and lifetime of photovoltaic (PV) modules. Research question: Conventional fault detection techniques require specific operating conditions which also consumed a lot of time, manpower and expenditure. Innovative techniques and technological advancements in the highly paced world expect instant results. Advanced and automatic fault diagnosis is such a process that delivers instant results and guarantees an extended lifetime for numerous critical photovoltaic module (PVM) components. Hypothesis: This study performs an automatic detection of faults in PVM with convolutional neural networks (CNN) that accurately classifies various faults based on the images captured from unmanned aerial vehicles (UAVs). Methodology: Dataset creation is one of the primary constraints when it comes to working with CNN. To overcome this drawback, a data augmentation method is adopted to enlarge the dataset from the limited number of available aerial images of PVM. These augmented images are fed into an automatic fault detection CNN model for deep feature extraction and classification. Results and Conclusion: The presented method exhibits an increase in the accuracy and performance of PVM health monitoring when compared with other conventional solutions. The performances of uniform and non-uniform datasets are also presented. Various pre-trained models like VGG16 and ResNet50 are compared with the proposed solution for performance evaluation. The results demonstrate that the overall classification accuracy of the proposed model for uniform and non-uniform datasets was found to be 95.07% and 94.14% respectively with lesser training time and number of epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
六七发布了新的文献求助10
刚刚
emm发布了新的文献求助10
1秒前
文艺忆枫发布了新的文献求助20
2秒前
LRxxx完成签到 ,获得积分10
2秒前
xiaoting应助科研通管家采纳,获得60
2秒前
大模型应助科研通管家采纳,获得10
2秒前
DD应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
xiaoting应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Alex应助fanny采纳,获得10
4秒前
半柚应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
yar应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
yar应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061