Convolutional Neural Network based Automatic Detection of Visible Faults in a Photovoltaic Module

卷积神经网络 计算机科学 故障检测与隔离 光伏系统 可靠性(半导体) 过程(计算) 人工智能 特征(语言学) 深度学习 断层(地质) 特征提取 模式识别(心理学) 实时计算 功率(物理) 工程类 电气工程 执行机构 语言学 物理 哲学 量子力学 地震学 地质学 操作系统
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:: 1-16 被引量:21
标识
DOI:10.1080/15567036.2021.1905753
摘要

Background/Objective: The primary objective of the present study is to distinguish several visual faults which hinder the performance, reliability and lifetime of photovoltaic (PV) modules. Research question: Conventional fault detection techniques require specific operating conditions which also consumed a lot of time, manpower and expenditure. Innovative techniques and technological advancements in the highly paced world expect instant results. Advanced and automatic fault diagnosis is such a process that delivers instant results and guarantees an extended lifetime for numerous critical photovoltaic module (PVM) components. Hypothesis: This study performs an automatic detection of faults in PVM with convolutional neural networks (CNN) that accurately classifies various faults based on the images captured from unmanned aerial vehicles (UAVs). Methodology: Dataset creation is one of the primary constraints when it comes to working with CNN. To overcome this drawback, a data augmentation method is adopted to enlarge the dataset from the limited number of available aerial images of PVM. These augmented images are fed into an automatic fault detection CNN model for deep feature extraction and classification. Results and Conclusion: The presented method exhibits an increase in the accuracy and performance of PVM health monitoring when compared with other conventional solutions. The performances of uniform and non-uniform datasets are also presented. Various pre-trained models like VGG16 and ResNet50 are compared with the proposed solution for performance evaluation. The results demonstrate that the overall classification accuracy of the proposed model for uniform and non-uniform datasets was found to be 95.07% and 94.14% respectively with lesser training time and number of epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助呦呦采纳,获得10
1秒前
张鑫发布了新的文献求助30
2秒前
科研通AI2S应助俏皮御姐采纳,获得10
2秒前
M旭旭完成签到,获得积分10
2秒前
小二郎应助矮小的乐菱采纳,获得10
3秒前
蓝白发布了新的文献求助30
3秒前
4秒前
Guinerve完成签到,获得积分10
4秒前
LEON发布了新的文献求助10
5秒前
Del应助CruiSk采纳,获得10
5秒前
彭于晏应助优雅的甜瓜采纳,获得10
6秒前
MAVS完成签到,获得积分10
6秒前
Tt完成签到,获得积分10
7秒前
Aurora完成签到 ,获得积分10
7秒前
猪猪完成签到,获得积分10
7秒前
今后应助M旭旭采纳,获得10
7秒前
卡皮巴拉完成签到,获得积分10
8秒前
8秒前
科目三应助之荷采纳,获得10
8秒前
8秒前
风和日丽完成签到,获得积分10
8秒前
8秒前
完美的一天完成签到,获得积分10
9秒前
mimiflying发布了新的文献求助30
9秒前
小轩窗zst完成签到,获得积分10
9秒前
9秒前
LEON完成签到,获得积分10
10秒前
lichun410932发布了新的文献求助10
10秒前
山有扶苏完成签到,获得积分10
12秒前
vikoel发布了新的文献求助200
12秒前
高大的可仁关注了科研通微信公众号
13秒前
yang完成签到,获得积分10
14秒前
穆奕完成签到 ,获得积分10
14秒前
wyfwz完成签到,获得积分20
14秒前
perfunctory发布了新的文献求助10
15秒前
15秒前
boom发布了新的文献求助10
15秒前
热心十三完成签到,获得积分10
16秒前
xzz发布了新的文献求助10
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975