材料科学
润滑油
共价键
点击化学
共价有机骨架
杂原子
分子
单体
表面改性
化学工程
聚合物
高分子化学
复合材料
有机化学
化学
工程类
戒指(化学)
多孔性
作者
Tingting Zhang,Sha Liu,Xiaozhi Zhang,Jingde Gao,Hong Yu,Qian Ye,Shujuan Liu,Weimin Liu
标识
DOI:10.1021/acsami.1c10459
摘要
To address the energy wastage problem caused by friction, novel lubricant additives other than the traditional and basic used additives with outstanding performance are urgently needed. A facile and efficient postsynthetic strategy for modification of two-dimensional (2D) covalent organic frameworks (COFs) was proposed to obtain dialkyl dithiophosphate (DDP)-functionalized COFs (DDP@TD-COF) as lubricant additives. The DDP@TD-COF was prepared by amine–aldehyde condensation reaction of the triazine compound and vinyl-functionalized monomers through a solvothermal process to form a vinyl-functionalized 2D COF (TD-COF), followed by covalent bonding of commercial lubricating molecules (DDP) via the UV-induced thiol-ene "click" reaction. The as-obtained DDP@TD-COF with homogeneous distribution of N, P, and S elements exhibits exceptional dispersion stability in the 500SN base oil, which remains stable for over 6 days. With a trace amount addition of 0.05 wt %, superior friction and wear reduction of DDP@TD-COF are observed with the friction coefficient lessened to 0.096 from 0.19, wear volume loss declined by 94.9%, and load carrying ability increased from 150 to 650 N simultaneously. The mechanism studies show that the shear force can induce interlayer slipping during the friction process, and the stripped DDP@TD-COF can get involved in the contacting interface inducing tribo–chemical reactions via N, P, and S elements forming a protective layer on the surfaces. Consequently, the DDP@TD-COF demonstrated remarkable friction diminution and abrasion resistance abilities even with a trace amount addition, and this work provides a dependable and valid route for the design and preparation of functional COF-based nanoadditives.
科研通智能强力驱动
Strongly Powered by AbleSci AI