[A dose-response meta-analysis on the relationship between daily tea intake and cardiovascular mortality based on the GRADE system].

医学 漏斗图 出版偏见 荟萃分析 置信区间 林地 随机效应模型 内科学 队列研究 死亡率 优势比 相对风险 人口学 危险系数 随机对照试验 混淆 子群分析 血压 观察研究 社会学
作者
K F Liu,Yue Xue,Congqun Lu,Xin Zhang,Shuping Yan,Jian Kang,Jie Zhao
出处
期刊:Chinese journal of cardiovascular diseases 卷期号:49 (5): 496-502
标识
DOI:10.3760/cma.j.cn112148-20200726-00592
摘要

Objective: To explore the relationship between daily tea intake and cardiovascular disease (CVD) mortality. Methods: PubMed, EMbase, The Cochrane, Chinese Biomedical Literature Database, CNKI, and Wanfang Database were searched to collect research on tea intake and CVD mortality. The search period was from the establishment of the database to June 2020. Two researchers independently screened and extracted literature. The risk of bias was evaluated in the included studies, a dose-response meta-analysis was conducted, sensitivity analysis and publication bias analysis of the research results, and quality evaluation of the included literature and GRADE classification of the evidence body were performed. Results: A total of 21 cohort or case-control studies were included, including 1 304 978 subjects. Among them, 38 222 deaths from CVD were reported. The quality scores of the included studies were all ≥ 6 points. The dose-response meta-analysis showed that for every additional cup of tea intake per day, the mortality rate of CVD decreased by about 3% (95%CI 0.95-0.98, P 0.05). The results of the bias analysis showed that Begg=0.42 and Egger=0.62, indicating that the distribution on both sides of the funnel chart is symmetrical, suggesting that there is no publication bias. The results of sensitivity analysis showed that the effect size of the outcome index did not change significantly after excluding any article, indicating that the results are robust and credible. The GRADE evaluation showed that the evidence grades of the outcome indicators were all low grade. Conclusions: Daily tea consumption is related to reduced CVD mortality. It is therefore recommended to drink an appropriate amount of tea daily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zhihan采纳,获得10
1秒前
1秒前
xylxyl完成签到,获得积分10
1秒前
2秒前
ZBN完成签到,获得积分10
2秒前
222关闭了222文献求助
3秒前
chinh完成签到,获得积分10
3秒前
钮祜禄废废完成签到,获得积分10
3秒前
3秒前
曾经富完成签到,获得积分10
5秒前
酷酷海豚完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
青青完成签到 ,获得积分10
9秒前
Chan0501发布了新的文献求助10
9秒前
昭昭完成签到,获得积分10
10秒前
SCI发布了新的文献求助10
10秒前
卓然完成签到,获得积分10
10秒前
李来仪发布了新的文献求助10
11秒前
12秒前
菲菲呀完成签到,获得积分10
12秒前
Rrr发布了新的文献求助10
12秒前
14秒前
陌路完成签到,获得积分10
14秒前
善学以致用应助leon采纳,获得30
14秒前
15秒前
斯文败类应助嘻嘻采纳,获得10
15秒前
科研通AI5应助小只bb采纳,获得30
15秒前
yyyy发布了新的文献求助10
15秒前
2023AKY完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
彭于晏应助惠惠采纳,获得10
18秒前
风魂剑主完成签到,获得积分10
19秒前
yryzst9899发布了新的文献求助10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794