A probabilistic graphical model foundation for enabling predictive digital twins at scale

计算机科学 概率逻辑 图形模型 代表(政治) 实施 抽象 比例(比率) 理论计算机科学 航程(航空) 人工智能 程序设计语言 工程类 认识论 物理 政治 哲学 航空航天工程 法学 量子力学 政治学
作者
Michael G. Kapteyn,Jacob V. R. Pretorius,Karen Willcox
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:1 (5): 337-347 被引量:153
标识
DOI:10.1038/s43588-021-00069-0
摘要

A unifying mathematical formulation is needed to move from one-off digital twins built through custom implementations to robust digital twin implementations at scale. This work proposes a probabilistic graphical model as a formal mathematical representation of a digital twin and its associated physical asset. We create an abstraction of the asset–twin system as a set of coupled dynamical systems, evolving over time through their respective state spaces and interacting via observed data and control inputs. The formal definition of this coupled system as a probabilistic graphical model enables us to draw upon well-established theory and methods from Bayesian statistics, dynamical systems and control theory. The declarative and general nature of the proposed digital twin model make it rigorous yet flexible, enabling its application at scale in a diverse range of application areas. We demonstrate how the model is instantiated to enable a structural digital twin of an unmanned aerial vehicle (UAV). The digital twin is calibrated using experimental data from a physical UAV asset. Its use in dynamic decision-making is then illustrated in a synthetic example where the UAV undergoes an in-flight damage event and the digital twin is dynamically updated using sensor data. The graphical model foundation ensures that the digital twin calibration and updating process is principled, unified and able to scale to an entire fleet of digital twins. This work proposes a probabilistic graphical model as a formal mathematical foundation for digital twins, and demonstrates how this model supports principled data assimilation, optimal control and end-to-end uncertainty quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耍酷千山发布了新的文献求助10
1秒前
一碗鱼发布了新的文献求助10
2秒前
min17完成签到,获得积分10
2秒前
AppleDog完成签到,获得积分10
3秒前
goodesBright应助wwwchhh采纳,获得10
3秒前
夏果果发布了新的文献求助10
3秒前
追寻紫安应助狂野的念波采纳,获得10
3秒前
4秒前
4秒前
何哈哈完成签到,获得积分10
5秒前
Yvonne发布了新的文献求助10
6秒前
7秒前
平淡问雁发布了新的文献求助10
8秒前
8秒前
8秒前
CipherSage应助kaneki采纳,获得10
9秒前
9秒前
积德行善SCI无边完成签到,获得积分0
9秒前
今后应助夏果果采纳,获得10
10秒前
生椰拿铁不加生椰完成签到 ,获得积分10
11秒前
12秒前
小虫发布了新的文献求助10
13秒前
周慧玲完成签到 ,获得积分10
13秒前
专注的草丛完成签到,获得积分10
14秒前
14秒前
孤巷的猫完成签到,获得积分10
14秒前
顾矜应助Ting采纳,获得10
15秒前
cqyyy完成签到 ,获得积分10
16秒前
李杰发布了新的文献求助10
16秒前
Cat应助胡豆豆采纳,获得20
17秒前
水若琳完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
平淡问雁完成签到,获得积分10
22秒前
23秒前
科研通AI2S应助Yara.H采纳,获得10
23秒前
外向语山发布了新的文献求助10
23秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055485
求助须知:如何正确求助?哪些是违规求助? 2712292
关于积分的说明 7430453
捐赠科研通 2357116
什么是DOI,文献DOI怎么找? 1248604
科研通“疑难数据库(出版商)”最低求助积分说明 606750
版权声明 596093