材料科学
物理
杰纳斯
凝聚态物理
结晶学
声子
带隙
从头算
纳米技术
量子力学
化学
作者
Mirali Jahangirzadeh Varjovi,M. Yagmurcukardes,F. M. Peeters,Engin Durgun
出处
期刊:Physical review
[American Physical Society]
日期:2021-05-26
卷期号:103 (19)
被引量:118
标识
DOI:10.1103/physrevb.103.195438
摘要
Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity.
\nIn the present paper, we propose three structural phases (1H,1T, and 1T′) of Janus WXO (X=S, Se, and Te) monolayers and investigate their vibrational,
\nthermal, elastic, piezoelectric, and electronic properties by using first-principles mods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T′ phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T′−WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H−WXO are found to be isotropic, they are orientation dependent for 1T′−WXO. It is also shown that 1H−WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T′-WSO, 1T′−WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several anoelectronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI