Applications of statistical experimental designs to improve statistical inference in weed management

推论 统计模型 统计 频数推理
作者
Steven Kim,Dong Sub Kim,Christina Magana-Ramirez
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (9): e0257472-e0257472 被引量:2
标识
DOI:10.1371/journal.pone.0257472
摘要

In a balanced design, researchers allocate the same number of units across all treatment groups. It has been believed as a rule of thumb among some researchers in agriculture. Sometimes, an unbalanced design outperforms a balanced design. Given a specific parameter of interest, researchers can design an experiment by unevenly distributing experimental units to increase statistical information about the parameter of interest. An additional way of improving an experiment is an adaptive design (e.g., spending the total sample size in multiple steps). It is helpful to have some knowledge about the parameter of interest to design an experiment. In the initial phase of an experiment, a researcher may spend a portion of the total sample size to learn about the parameter of interest. In the later phase, the remaining portion of the sample size can be distributed in order to gain more information about the parameter of interest. Though such ideas have existed in statistical literature, they have not been applied broadly in agricultural studies. In this article, we used simulations to demonstrate the superiority of the experimental designs over the balanced designs under three practical situations: comparing two groups, studying a dose-response relationship with right-censored data, and studying a synergetic effect of two treatments. The simulations showed that an objective-specific design provides smaller error in parameter estimation and higher statistical power in hypothesis testing when compared to a balanced design. We also conducted an adaptive experimental design applied to a dose-response study with right-censored data to quantify the effect of ethanol on weed control. Retrospective simulations supported the benefit of this adaptive design as well. All researchers face different practical situations, and appropriate experimental designs will help utilize available resources efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shi hui发布了新的文献求助10
1秒前
chen发布了新的文献求助10
1秒前
5秒前
7秒前
11秒前
冰糖完成签到 ,获得积分10
11秒前
天使小五哥应助chen采纳,获得10
12秒前
zjw发布了新的文献求助10
17秒前
丘比特应助34采纳,获得10
18秒前
Hello应助月不笑采纳,获得10
19秒前
SciGPT应助刘家翔采纳,获得10
20秒前
小屋完成签到,获得积分10
22秒前
28秒前
xgx984完成签到,获得积分10
28秒前
来日可期完成签到,获得积分10
29秒前
月不笑发布了新的文献求助10
33秒前
zeyin完成签到,获得积分10
33秒前
科研通AI2S应助林波er采纳,获得10
34秒前
舒伯特完成签到 ,获得积分10
34秒前
36秒前
生动映容完成签到 ,获得积分10
37秒前
喜悦的虔发布了新的文献求助10
41秒前
Moonber完成签到,获得积分10
41秒前
不爱吃韭菜发布了新的文献求助200
41秒前
洁洁3323发布了新的文献求助10
43秒前
46秒前
49秒前
思源应助喜悦的虔采纳,获得10
49秒前
51秒前
uwasa发布了新的文献求助10
55秒前
思源应助月不笑采纳,获得10
56秒前
含糊的尔槐应助yao采纳,获得200
57秒前
stars发布了新的文献求助10
57秒前
justsayit完成签到 ,获得积分10
1分钟前
FlightAttendant完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
学术小天才完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359603
求助须知:如何正确求助?哪些是违规求助? 2982349
关于积分的说明 8703179
捐赠科研通 2664017
什么是DOI,文献DOI怎么找? 1458777
科研通“疑难数据库(出版商)”最低求助积分说明 675241
邀请新用户注册赠送积分活动 666331