Fe-N-C catalyst with Fe-NX sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism

催化作用 电子顺磁共振 化学 煅烧 哌嗪 猝灭(荧光) 电子转移 热解 光化学 降级(电信) 化学工程 无机化学 核化学 有机化学 荧光 工程类 物理 电信 量子力学 核磁共振 计算机科学
作者
Tong Xiao,Yan Wang,Jinquan Wan,Yongwen Ma,Zhicheng Yan,Shuhong Huang,Cheng Zeng
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:424: 127380-127380 被引量:134
标识
DOI:10.1016/j.jhazmat.2021.127380
摘要

Developing high-efficient catalysts is crucial for activating peroxymonosulfate (PMS). Fe-N-C catalysts exhibit excellent performance for PMS activation because of the contribution of doped N, Fe-Nx and Fe3C sites. In our work, a series of Fe-N-C catalysts with high-performance was obtained by pyrolyzing Fe-Zn-MOFs precursors. During pyrolysis process, the change of chemical bonds and formation of active sites in the precursor were elucidated by characterization analysis and related catalytic experiments. Graphitic N, Fe-Nx and Fe3C were confirmed to activate PMS synergistically for ciprofloxacin (CIP) degradation. Besides, the catalytic performance was proportional to the amount of doped iron and calcination temperature. Moreover, the Fe-N-C-3-800/PMS system not only displayed good recycling performance, but also had high anti-interference ability. Integrated with quenching and electron paramagnetic resonance (EPR) experiments, a non-radical pathway dominated by 1O2 was proposed. Furthermore, PMS could bond to Fe-N-C-3-800 to form intermediate for charge transfer, thus accelerate electron transfer between CIP and PMS to realize degradation of CIP. Six main pathways of CIP degradation were proposed, which include bond fission of N-C on piperazine ring and direct oxidation of CIP. This study provided a new idea for the design of heterogeneous carbon catalysts in advanced oxidation field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的新柔完成签到,获得积分10
刚刚
1秒前
蓝莓松饼发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
Hello应助韭黄采纳,获得10
2秒前
Akim应助HopeStar采纳,获得10
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
3秒前
彼岸花完成签到 ,获得积分10
3秒前
科研小兔子完成签到,获得积分10
3秒前
sfw发布了新的文献求助10
3秒前
Zn应助梦鱼采纳,获得10
4秒前
瓦尔迪完成签到,获得积分10
4秒前
jennyyu发布了新的文献求助10
4秒前
灯灯完成签到,获得积分10
5秒前
大白天的飙摩的完成签到,获得积分10
5秒前
沉静的万天完成签到 ,获得积分10
5秒前
workwork完成签到,获得积分10
5秒前
GOODYUE完成签到,获得积分20
5秒前
轻松笙完成签到,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
aaa完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
顺顺发布了新的文献求助20
8秒前
8秒前
黎黎完成签到,获得积分10
8秒前
8秒前
camellia发布了新的文献求助10
8秒前
9秒前
9秒前
筱玉完成签到,获得积分10
9秒前
李文博发布了新的文献求助10
9秒前
斯文静曼发布了新的文献求助10
9秒前
jiaolulu完成签到,获得积分10
9秒前
优秀的枫完成签到,获得积分20
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759