场效应晶体管
电极
电容
栅极电介质
阈值电压
电荷(物理)
低压
电容器
作者
Songyan Yu,Erin L. Ratcliff
标识
DOI:10.1021/acsami.1c13009
摘要
In this work, we investigate material design criteria for low-powered/self-powered and efficient organic electrochemical transistors (OECTs) to be operated in the faradaic mode (detection at the gate electrode occurs via electron transfer events). To rationalize device design principles, we adopt a Marcus-Gerischer perspective for electrochemical processes at both the gate and channel interfaces. This perspective considers density of states (DOS) for the semiconductor channel, the gate electrode, and the electrolyte. We complement our approach with energy band offsets of relevant electrochemical potentials that can be independently measured from transistor geometry using conventional electrochemical methods as well as an approach to measure electrolyte potential in an operating OECT. By systematically changing the relative redox property offsets between the redox-active electrolyte and semiconducting polymer channel, we demonstrate a first-order design principle that necessary gate voltage is minimized by good DOS overlap of the two redox processes at the gate and channel. Specifically, for p-type turn-on OECTs, the voltage-dependent, electrochemically active semiconductor DOS should overlap with the oxidant form of the electrolyte to minimize the onset voltage for transconductance. A special case where the electrolyte can be used to spontaneously dope the polymer via charge transfer is also considered. Collectively, our results provide material design pathways toward the development of simple, robust, power-saving, and high-throughput OECT biosensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI