Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks

计算机科学 卷积神经网络 人工智能 深度学习 背景(考古学) 超声波 模式识别(心理学) 计算机视觉 放射科 医学 生物 古生物学
作者
Ester Bonmati,Yipeng Hu,Alexander Grimwood,Gavin Johnson,George Goodchild,Margaret G. Keane,Kurinchi Selvan Gurusamy,Brian R Davidson,Matthew J. Clarkson,Stephen P. Pereira,Dean C. Barratt
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1311-1319 被引量:12
标识
DOI:10.1109/tmi.2021.3139023
摘要

Ultrasound imaging is a commonly used technology for visualising patient anatomy in real-time during diagnostic and therapeutic procedures. High operator dependency and low reproducibility make ultrasound imaging and interpretation challenging with a steep learning curve. Automatic image classification using deep learning has the potential to overcome some of these challenges by supporting ultrasound training in novices, as well as aiding ultrasound image interpretation in patient with complex pathology for more experienced practitioners. However, the use of deep learning methods requires a large amount of data in order to provide accurate results. Labelling large ultrasound datasets is a challenging task because labels are retrospectively assigned to 2D images without the 3D spatial context available in vivo or that would be inferred while visually tracking structures between frames during the procedure. In this work, we propose a multi-modal convolutional neural network (CNN) architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure. We use a CNN composed of two branches, one for voice data and another for image data, which are joined to predict image labels from the spoken names of anatomical landmarks. The network was trained using recorded verbal comments from expert operators. Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels. We conclude that the addition of spoken commentaries can increase the performance of ultrasound image classification, and eliminate the burden of manually labelling large EUS datasets necessary for deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Can完成签到,获得积分10
2秒前
听风完成签到 ,获得积分10
3秒前
miemie66完成签到,获得积分10
4秒前
悦悦发布了新的文献求助10
5秒前
时冬冬应助科研通管家采纳,获得10
6秒前
冉第完成签到 ,获得积分10
6秒前
秀丽烨霖应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
秀丽烨霖应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
领导范儿应助科研通管家采纳,获得20
6秒前
侯元正完成签到,获得积分10
7秒前
科研通AI2S应助YXH采纳,获得10
7秒前
en发布了新的文献求助10
8秒前
liyanglin完成签到 ,获得积分10
8秒前
小吴完成签到 ,获得积分10
8秒前
xiaoxiaojiang完成签到 ,获得积分10
9秒前
10秒前
en关闭了en文献求助
12秒前
teborlee完成签到,获得积分10
13秒前
1278day完成签到,获得积分10
14秒前
Hello应助SYX采纳,获得10
17秒前
朱祥龙完成签到,获得积分10
20秒前
YXH完成签到,获得积分10
23秒前
深情安青应助赧赧采纳,获得10
23秒前
feilei完成签到,获得积分10
24秒前
打打应助悦悦采纳,获得10
24秒前
黑眼豆豆完成签到,获得积分10
25秒前
31秒前
SYX完成签到,获得积分20
31秒前
32秒前
如意的尔蝶完成签到,获得积分10
33秒前
yg完成签到,获得积分10
34秒前
SYX发布了新的文献求助10
36秒前
lslfreedom完成签到 ,获得积分10
36秒前
星火发布了新的文献求助10
37秒前
于清绝完成签到 ,获得积分10
37秒前
wjy2to2完成签到,获得积分10
37秒前
阿宅完成签到,获得积分10
38秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265696
求助须知:如何正确求助?哪些是违规求助? 2905653
关于积分的说明 8334336
捐赠科研通 2575918
什么是DOI,文献DOI怎么找? 1400269
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633554