Voice-Assisted Image Labeling for Endoscopic Ultrasound Classification Using Neural Networks

计算机科学 卷积神经网络 人工智能 深度学习 背景(考古学) 超声波 模式识别(心理学) 计算机视觉 放射科 医学 古生物学 生物
作者
Ester Bonmati,Yipeng Hu,Alexander Grimwood,Gavin Johnson,George Goodchild,Margaret G. Keane,Kurinchi Selvan Gurusamy,Brian R Davidson,Matthew J. Clarkson,Stephen P. Pereira,Dean C. Barratt
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1311-1319 被引量:12
标识
DOI:10.1109/tmi.2021.3139023
摘要

Ultrasound imaging is a commonly used technology for visualising patient anatomy in real-time during diagnostic and therapeutic procedures. High operator dependency and low reproducibility make ultrasound imaging and interpretation challenging with a steep learning curve. Automatic image classification using deep learning has the potential to overcome some of these challenges by supporting ultrasound training in novices, as well as aiding ultrasound image interpretation in patient with complex pathology for more experienced practitioners. However, the use of deep learning methods requires a large amount of data in order to provide accurate results. Labelling large ultrasound datasets is a challenging task because labels are retrospectively assigned to 2D images without the 3D spatial context available in vivo or that would be inferred while visually tracking structures between frames during the procedure. In this work, we propose a multi-modal convolutional neural network (CNN) architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure. We use a CNN composed of two branches, one for voice data and another for image data, which are joined to predict image labels from the spoken names of anatomical landmarks. The network was trained using recorded verbal comments from expert operators. Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels. We conclude that the addition of spoken commentaries can increase the performance of ultrasound image classification, and eliminate the burden of manually labelling large EUS datasets necessary for deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poppy完成签到,获得积分10
刚刚
刚刚
orixero应助cTiyAmo采纳,获得10
刚刚
张青青完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
MJJ完成签到,获得积分20
1秒前
李健应助vic303采纳,获得10
2秒前
符驳完成签到,获得积分10
2秒前
大模型应助足球采纳,获得10
3秒前
SYLH应助waoller1采纳,获得10
3秒前
mmssdd发布了新的文献求助10
3秒前
球球应助waoller1采纳,获得10
3秒前
SYLH应助waoller1采纳,获得10
3秒前
沸腾鱼应助waoller1采纳,获得10
3秒前
沸腾鱼应助waoller1采纳,获得10
3秒前
球球应助waoller1采纳,获得10
3秒前
研友_ZAyQeZ发布了新的文献求助10
3秒前
TYT完成签到,获得积分20
4秒前
爆米花应助毛毛虫采纳,获得30
4秒前
田様应助hhhhhh采纳,获得10
4秒前
zhaohongyan发布了新的文献求助10
4秒前
隐形的巴豆完成签到,获得积分10
4秒前
5秒前
5秒前
allhao完成签到,获得积分10
6秒前
AQQ发布了新的文献求助10
6秒前
完美世界应助妖孽的二狗采纳,获得10
6秒前
奋斗飞薇完成签到,获得积分10
6秒前
其实完成签到,获得积分10
6秒前
科研通AI2S应助dcx采纳,获得10
7秒前
啦啦啦发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
lmg发布了新的文献求助10
7秒前
万能图书馆应助vic303采纳,获得10
8秒前
耀眼的紫丝完成签到,获得积分10
8秒前
Maer发布了新的文献求助10
8秒前
玻璃外的世界完成签到,获得积分10
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406