高光谱成像
支持向量机
人工智能
降维
计算机科学
主成分分析
小波
模式识别(心理学)
生物系统
环境污染
遥感
环境科学
地质学
生物
环境保护
作者
Xin Zhou,Chunjiang Zhao,Jun Sun,Yan Cao,Lvhui Fu
标识
DOI:10.1016/j.infrared.2021.103936
摘要
The feasibility of fluorescence hyperspectral technology to classify lettuce leaves under different heavy metal pollutant cadmium stress was discussed and demonstrated, and the wavelet principal component analysis (WPCA) algorithm was proposed to effectively reduce the dimensionality of the data in this paper. The fluorescence hyperspectral images of 1250 lettuce leaves with 5 cadmium (Cd) stress categories (contrast check, low pollution, light pollution, medium pollution and severe pollution) were obtained by fluorescence hyperspectral imaging instrument. In addition, the results of atomic absorption spectrometry showed that the Cd content in lettuce leaves increased with the increase of Cd stress concentration. Taking the entire lettuce leaf as the region of interest, the ROI fluorescence hyperspectra of the lettuce leaf was obtained through mask processing. Then, WPCA was used to reduce the dimensionality of the fluorescence hyperspectral data with different wavelet basis function including db4, db5, db6, sym5 and sym7. Support vector machine (SVM) and cuckoo search optimization support vector machine (CS-SVM) models were set up based on WPCA dimensionality reduction data. Besides, the classification accuracy rate of WPCA-CS-SVM model for Cd stress lettuce leaves was higher than that of WPCA-SVM model. Among them, the WPCA-CS-SVM model based on the third layer decomposition of the sym7 wavelet basis function had the best performance, the accuracy of the calibration set and the prediction set were 99.79% and 94.19%, and the modeling time was only 465.32 s. WPCA algorithm combined with fluorescence hyperspectral technology could effectively realize the classification of lettuce leaves under different Cd concentration stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI