Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and fluorescence hyperspectral technology

高光谱成像 支持向量机 人工智能 降维 计算机科学 主成分分析 小波 模式识别(心理学) 生物系统 环境污染 遥感 环境科学 地质学 生物 环境保护
作者
Xin Zhou,Chunjiang Zhao,Jun Sun,Yan Cao,Lvhui Fu
标识
DOI:10.1016/j.infrared.2021.103936
摘要

The feasibility of fluorescence hyperspectral technology to classify lettuce leaves under different heavy metal pollutant cadmium stress was discussed and demonstrated, and the wavelet principal component analysis (WPCA) algorithm was proposed to effectively reduce the dimensionality of the data in this paper. The fluorescence hyperspectral images of 1250 lettuce leaves with 5 cadmium (Cd) stress categories (contrast check, low pollution, light pollution, medium pollution and severe pollution) were obtained by fluorescence hyperspectral imaging instrument. In addition, the results of atomic absorption spectrometry showed that the Cd content in lettuce leaves increased with the increase of Cd stress concentration. Taking the entire lettuce leaf as the region of interest, the ROI fluorescence hyperspectra of the lettuce leaf was obtained through mask processing. Then, WPCA was used to reduce the dimensionality of the fluorescence hyperspectral data with different wavelet basis function including db4, db5, db6, sym5 and sym7. Support vector machine (SVM) and cuckoo search optimization support vector machine (CS-SVM) models were set up based on WPCA dimensionality reduction data. Besides, the classification accuracy rate of WPCA-CS-SVM model for Cd stress lettuce leaves was higher than that of WPCA-SVM model. Among them, the WPCA-CS-SVM model based on the third layer decomposition of the sym7 wavelet basis function had the best performance, the accuracy of the calibration set and the prediction set were 99.79% and 94.19%, and the modeling time was only 465.32 s. WPCA algorithm combined with fluorescence hyperspectral technology could effectively realize the classification of lettuce leaves under different Cd concentration stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echolan发布了新的文献求助10
刚刚
SID完成签到,获得积分10
刚刚
中九完成签到 ,获得积分10
刚刚
Rrr完成签到,获得积分10
刚刚
hehuan0520完成签到,获得积分10
刚刚
刚刚
打打应助chinning采纳,获得10
刚刚
桐桐应助wangyanyan采纳,获得10
1秒前
1秒前
zzznznnn发布了新的文献求助10
1秒前
jogrgr发布了新的文献求助10
2秒前
sun发布了新的文献求助10
2秒前
布鲁鲁发布了新的文献求助10
2秒前
自信晟睿完成签到,获得积分10
2秒前
酷波er应助哒哒采纳,获得10
3秒前
3秒前
沉默乐荷完成签到,获得积分10
3秒前
rstorz应助皮尤尤采纳,获得10
3秒前
sweetbearm应助小离采纳,获得10
3秒前
何青岚关注了科研通微信公众号
4秒前
doudou完成签到,获得积分20
4秒前
李健的小迷弟应助潦草采纳,获得10
4秒前
5秒前
5秒前
5秒前
柒八染完成签到,获得积分10
5秒前
wsljc134完成签到,获得积分20
5秒前
6秒前
善良香岚完成签到,获得积分20
6秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
6秒前
不安太阳完成签到,获得积分10
7秒前
t_suo完成签到,获得积分10
7秒前
bioinforiver完成签到,获得积分10
7秒前
乐观跳跳糖完成签到,获得积分10
7秒前
7秒前
WxChen发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759