A Hierarchical Region-Merging Algorithm for 3-D Segmentation of Individual Trees Using UAV-LiDAR Point Clouds

点云 计算机科学 牙冠(牙科) 激光雷达 分水岭 人工智能 分割 计算机视觉 遥感 图像分割 树(集合论) 环境科学 地理 数学 数学分析 医学 牙科
作者
Yuanshuo Hao,Faris Rafi Almay Widagdo,Xin Liu,Yongshuai Liu,Lihu Dong,Fengri Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:17
标识
DOI:10.1109/tgrs.2021.3121419
摘要

Over an extended period, remote-sensing-based individual tree analysis has played a critical role in modern forest inventory and management research. The segmentation of individual trees from aerial point clouds usually depends on the characteristics of peak-like uplift on the crown surface; however, the performance inevitably decreases with increasing visibility of such features in point clouds, especially for high-density forests. Herein, we developed a novel hierarchical region-merging algorithm that first over-segmented the entire forest scene based on local density and then merged the over-segmented partitions into pairs through a stepwise optimal process to produce the final segmentation. In the region-merging method, a global merging cost was introduced to shift from local detection of crown features to use the overall compactness of forest point clouds. The experiments were conducted using unmanned aerial vehicle light detection and ranging (UAV-LiDAR) point clouds from three coniferous stands with different densities and a high-density coniferous and broad-leaved mixed stand. A total of 5510 field-measured trees in 36 plots were used to assess the accuracy of the proposed method. Our method achieved F-scores of 0.91, 0.88, 0.84, and 0.80 for low- (~700 stems/ha), medium- (~1000 stems/ha), and high-density (~2000 stems/ha) conifer stands and coniferous and broad-leaved mixed forests (~1800 stems/ha), respectively. Compared with the classical individual tree segmentation methods (marker-controlled watershed segmentation and point cloud region-growing algorithm), our method obtained comparable performance in low-density conifer stands and superior performance in the other stands. Furthermore, the region-merging algorithm could detect 10% more suppressed trees on average, which led to an apparent improvement in detection accuracy. The proposed algorithm provides a flexible segmentation framework that could be further improved by a different design that merges costs or applies multiscale segmentation with different stopping criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
奥利给发布了新的文献求助10
4秒前
5秒前
6秒前
10秒前
123456777完成签到 ,获得积分10
12秒前
xukai发布了新的文献求助10
13秒前
年轻的醉冬完成签到 ,获得积分10
15秒前
奥利给完成签到,获得积分10
15秒前
胜天半子应助迷路的寒云采纳,获得10
17秒前
18秒前
李朝富完成签到,获得积分10
19秒前
低风险不升级完成签到,获得积分10
20秒前
21秒前
22秒前
LayeredSly完成签到,获得积分10
23秒前
枍枫发布了新的文献求助10
24秒前
超级惜芹完成签到,获得积分10
24秒前
夜雨完成签到,获得积分10
25秒前
binbin发布了新的文献求助10
25秒前
搜集达人应助美丽的宝马采纳,获得10
27秒前
27秒前
ahai发布了新的文献求助10
28秒前
简单又夏完成签到 ,获得积分10
29秒前
30秒前
蔺丹翠完成签到 ,获得积分10
30秒前
xukai完成签到,获得积分20
31秒前
32秒前
33秒前
z123完成签到,获得积分10
35秒前
37秒前
揽星色应助uu采纳,获得10
38秒前
38秒前
zyh完成签到,获得积分10
39秒前
共享精神应助科研通管家采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
思源应助科研通管家采纳,获得30
40秒前
顾矜应助科研通管家采纳,获得10
40秒前
大气时光完成签到,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352352
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680125
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455859
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666