Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment

地标 人工智能 计算机科学 面子(社会学概念) 束流调整 计算机视觉 捆绑 模式识别(心理学) 图像(数学) 社会科学 社会学 材料科学 复合材料
作者
Yuxing Wang,Yawen Lu,Zhihua Xie,Guoyu Lu
标识
DOI:10.1145/3474085.3475689
摘要

We address the problem of reconstructing 3D human face from multi-view facial images using Structure-from-Motion (SfM) based on deep neural networks. While recent learning-based monocular view methods have shown impressive results for 3D facial reconstruction, the single-view setting is easily affected by depth ambiguities and poor face pose issues. In this paper, we propose a novel unsupervised 3D face reconstruction architecture by leveraging the multi-view geometry constraints to train accurate face pose and depth maps. Facial images from multiple perspectives of each 3D face model are input to train the network. Multi-view geometry constraints are fused into unsupervised network by establishing loss constraints from spatial and spectral perspectives. To make the trained 3D face have more details, facial landmark detector is explored to acquire massive facial information to constrain face pose and depth estimation. Through minimizing massive landmark displacement distance by bundle adjustment, an accurate 3D face model can be reconstructed. Extensive experiments demonstrate the superiority of our proposed approach over other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ccm应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
ccm应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
林夏应助科研通管家采纳,获得10
1秒前
JamesPei应助sanmu采纳,获得10
3秒前
天天快乐应助sanmu采纳,获得30
3秒前
跳跃幼荷完成签到,获得积分10
5秒前
huenguyenvan完成签到,获得积分10
6秒前
7秒前
ZhaoW完成签到,获得积分10
8秒前
吱吱今天要向上完成签到,获得积分10
9秒前
Elan完成签到 ,获得积分10
9秒前
9秒前
9秒前
脑洞疼应助66采纳,获得10
9秒前
Robigo完成签到,获得积分10
9秒前
10秒前
研友_Z7XY28完成签到,获得积分10
10秒前
11秒前
柠檬发布了新的文献求助10
11秒前
lz关闭了lz文献求助
12秒前
13秒前
lsl应助吱吱今天要向上采纳,获得10
13秒前
埋头赶路应助秃头小宝贝采纳,获得10
14秒前
14秒前
14秒前
14秒前
上官若男应助hhh123采纳,获得10
14秒前
xiaoguan完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
Lucas应助aliu采纳,获得10
16秒前
16秒前
pluto应助鱿鱼的月亮采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642756
求助须知:如何正确求助?哪些是违规求助? 4759612
关于积分的说明 15018685
捐赠科研通 4801257
什么是DOI,文献DOI怎么找? 2566565
邀请新用户注册赠送积分活动 1524558
关于科研通互助平台的介绍 1484100