已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction models of treatment response in lupus nephritis

狼疮性肾炎 医学 免疫学 内科学 疾病
作者
Isabelle Ayoub,Bethany J. Wolf,Linyu Geng,Huijuan Song,Aastha Khatiwada,Betty P. Tsao,Jim C. Oates,Brad H. Rovin
出处
期刊:Kidney International [Elsevier]
卷期号:101 (2): 379-389 被引量:23
标识
DOI:10.1016/j.kint.2021.11.014
摘要

In order to develop prediction models of one-year treatment response in lupus nephritis, an approach using machine learning to combine traditional clinical data and novel urine biomarkers was undertaken. Contemporary lupus nephritis biomarkers were identified through an unbiased PubMed search. Thirteen novel urine proteins contributed to the top 50% of ranked biomarkers and were selected for measurement at the time of lupus nephritis flare. These novel markers along with traditional clinical data were incorporated into a variety of machine learning algorithms to develop prediction models of one-year proteinuria and estimated glomerular filtration rate (eGFR). Models were trained on 246 individuals from four different sub-cohorts and validated on an independent cohort of 30 patients with lupus nephritis. Seven models were considered for each outcome. Three-quarters of these models demonstrated good predictive value with areas under the receiver operating characteristic curve over 0.7. Overall, prediction performance was the best for models of eGFR response to treatment. Furthermore, the best performing models contained both traditional clinical data and novel urine biomarkers, including cytokines, chemokines, and markers of kidney damage. Thus, our study provides further evidence that a machine learning approach can predict lupus nephritis outcomes at one year using a set of traditional and novel biomarkers. However, further validation of the utility of machine learning as a clinical decision aid to improve outcomes will be necessary before it can be routinely used in clinical practice to guide therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PSY发布了新的文献求助30
2秒前
TS发布了新的文献求助10
2秒前
等待往事完成签到,获得积分10
3秒前
4秒前
lauraaa发布了新的文献求助10
4秒前
Hongtao完成签到 ,获得积分10
5秒前
w。发布了新的文献求助20
6秒前
等待往事发布了新的文献求助10
7秒前
634301059发布了新的文献求助10
8秒前
情怀应助桥豆麻袋采纳,获得10
8秒前
落后盼望完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
15秒前
17秒前
17秒前
桥豆麻袋发布了新的文献求助10
19秒前
调研昵称发布了新的文献求助10
20秒前
呵呵哒完成签到,获得积分10
20秒前
HR112应助动人的书雪采纳,获得10
21秒前
灰光呀完成签到,获得积分10
22秒前
小呀嘛小二郎完成签到 ,获得积分10
23秒前
25秒前
西瓜发布了新的文献求助10
28秒前
28秒前
无奈完成签到,获得积分10
28秒前
30秒前
jmg03发布了新的文献求助10
32秒前
34秒前
sunboy14521完成签到 ,获得积分10
35秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
不安青牛应助科研通管家采纳,获得10
36秒前
mmyhn应助科研通管家采纳,获得10
36秒前
不安青牛应助科研通管家采纳,获得10
36秒前
上官若男应助科研通管家采纳,获得10
36秒前
上官若男应助科研通管家采纳,获得10
36秒前
Lucas应助科研通管家采纳,获得10
36秒前
浅尝离白应助科研通管家采纳,获得30
36秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142