The Prediction of Chiral Metamaterial Resonance using Convolutional Neural Networks and Conventional Machine Learning Algorithms

卷积神经网络 超材料 计算机科学 共振(粒子物理) 算法 人工智能 人工神经网络 谐振器 超参数 机器学习 贝叶斯定理 物理 粒子物理学 贝叶斯概率 光学
作者
Aybike Ural,Zeynep Hilal Kilimci
出处
期刊:International journal of computational and experimental science and engineering [International Journal of Computational and Experimental Science and Engineering (IJCESEN)]
卷期号:7 (3): 156-163 被引量:27
标识
DOI:10.22399/ijcesen.973726
摘要

Electromagnetic resonance is the most important distinguishing property of metamaterials to examine many unusual phenomena. The resonant response of metamaterials can depend many parameters such as geometry, incident wave polarization. The estimation and the design of the unit cells can be challenging for the required application. The research on resonant behavior can yield promising applications. We investigate the resonance frequency of the chiral resonator as a unit of chiral metamaterial employing both traditional machine learning algorithms and convolutional deep neural networks. To our knowledge, this is the very first attempt on chiral metamaterials in that comparing the impact of various machine learning algorithms and deep learning model. The effect of geometrical parameters of the chiral resonator on the resonance frequency is studied. For this purpose, convolutional neural networks, support vector machines, naive Bayes, decision trees, random forests are employed for classification of resonance frequency. Extensive experiments are performed by varying training set percentages, epoch sizes, and data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助千秋骚年采纳,获得10
1秒前
LX发布了新的文献求助10
2秒前
chemlixy完成签到,获得积分10
2秒前
冷冷暴力发布了新的文献求助10
4秒前
4秒前
陶治发布了新的文献求助10
4秒前
爱静静应助mmyhn采纳,获得10
4秒前
NexusExplorer应助zhishiyanhua采纳,获得10
7秒前
失眠的汽车完成签到,获得积分10
9秒前
星辰大海应助Hh采纳,获得10
9秒前
小高同学发布了新的文献求助10
9秒前
小野狼完成签到,获得积分10
9秒前
在水一方应助靓丽的乌龟采纳,获得10
10秒前
舒心台灯发布了新的文献求助30
12秒前
12秒前
momo完成签到,获得积分10
13秒前
可爱的函函应助董吉采纳,获得10
13秒前
Ava应助执着采纳,获得10
14秒前
西湖渔夫发布了新的文献求助10
16秒前
17秒前
17秒前
被动科研完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
cheng发布了新的文献求助30
19秒前
小吴完成签到,获得积分10
21秒前
21秒前
lwz2688完成签到,获得积分10
22秒前
吹吹完成签到,获得积分10
22秒前
醋包plz发布了新的文献求助10
23秒前
活力菠萝完成签到,获得积分10
23秒前
可爱的函函应助小高同学采纳,获得10
23秒前
冷冷暴力完成签到,获得积分10
23秒前
orixero应助陶治采纳,获得10
23秒前
千秋骚年发布了新的文献求助10
24秒前
24秒前
铃旅完成签到,获得积分10
26秒前
csuxxm完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175