亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification

点积 熵(时间箭头) 分子 化学 相似性(几何) 计算机科学 小分子 色谱法 人工智能 计算生物学 生物系统 分析化学(期刊) 数学 生物 生物化学 物理 有机化学 热力学 几何学 图像(数学)
作者
Yuanyue Li,Tobias Kind,Jacob Folz,Arpana Vaniya,Sajjan S. Mehta,Oliver Fiehn
出处
期刊:Nature Methods [Nature Portfolio]
卷期号:18 (12): 1524-1531 被引量:180
标识
DOI:10.1038/s41592-021-01331-z
摘要

Compound identification in small-molecule research, such as untargeted metabolomics or exposome research, relies on matching tandem mass spectrometry (MS/MS) spectra against experimental or in silico mass spectral libraries. Most software programs use dot product similarity scores. Here we introduce the concept of MS/MS spectral entropy to improve scoring results in MS/MS similarity searches via library matching. Entropy similarity outperformed 42 alternative similarity algorithms, including dot product similarity, when searching 434,287 spectra against the high-quality NIST20 library. Entropy similarity scores proved to be highly robust even when we added different levels of noise ions. When we applied entropy levels to 37,299 experimental spectra of natural products, false discovery rates of less than 10% were observed at entropy similarity score 0.75. Experimental human gut metabolome data were used to confirm that entropy similarity largely improved the accuracy of MS-based annotations in small-molecule research to false discovery rates below 10%, annotated new compounds and provided the basis to automatically flag poor-quality, noisy spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果应助无限幻枫采纳,获得10
刚刚
Qvby3完成签到 ,获得积分10
4秒前
8秒前
11发布了新的文献求助10
9秒前
cc0514gr完成签到,获得积分10
12秒前
HMG1COA完成签到 ,获得积分10
12秒前
leslieo3o发布了新的文献求助10
13秒前
北克完成签到 ,获得积分10
16秒前
16秒前
橘猫123456完成签到,获得积分10
17秒前
小屁孩完成签到,获得积分10
19秒前
11发布了新的文献求助10
21秒前
annis发布了新的文献求助10
23秒前
隐形曼青应助11采纳,获得10
31秒前
0514gr完成签到,获得积分10
32秒前
林狗完成签到 ,获得积分10
33秒前
无限幻枫完成签到,获得积分10
34秒前
annis完成签到,获得积分10
35秒前
37秒前
39秒前
半剖天空发布了新的文献求助50
41秒前
酷波er应助牛顿不吃果采纳,获得10
43秒前
43秒前
11发布了新的文献求助10
44秒前
48秒前
Afterlife34发布了新的文献求助10
48秒前
347u完成签到 ,获得积分10
49秒前
田様应助11采纳,获得10
50秒前
LMH完成签到,获得积分10
51秒前
54秒前
foreverwhy完成签到 ,获得积分10
59秒前
1分钟前
11发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李希发布了新的文献求助20
1分钟前
Vincent1990完成签到,获得积分10
1分钟前
打打应助李希采纳,获得20
1分钟前
科研通AI5应助积极泽洋采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210066
求助须知:如何正确求助?哪些是违规求助? 4387034
关于积分的说明 13662169
捐赠科研通 4246614
什么是DOI,文献DOI怎么找? 2329858
邀请新用户注册赠送积分活动 1327575
关于科研通互助平台的介绍 1280072