Collaborative and Multilevel Feature Selection Network for Action Recognition

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 棱锥(几何) 特征选择 背景(考古学) 频道(广播) 水准点(测量) 选择(遗传算法) 等级制度 数学 地理 哲学 考古 经济 几何学 语言学 市场经济 计算机网络 大地测量学
作者
Zhenxing Zheng,Gaoyun An,Shan Cao,Dapeng Wu,Qiuqi Ruan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1304-1318 被引量:10
标识
DOI:10.1109/tnnls.2021.3105184
摘要

The feature pyramid has been widely used in many visual tasks, such as fine-grained image classification, instance segmentation, and object detection, and had been achieving promising performance. Although many algorithms exploit different-level features to construct the feature pyramid, they usually treat them equally and do not make an in-depth investigation on the inherent complementary advantages of different-level features. In this article, to learn a pyramid feature with the robust representational ability for action recognition, we propose a novel collaborative and multilevel feature selection network (FSNet) that applies feature selection and aggregation on multilevel features according to action context. Unlike previous works that learn the pattern of frame appearance by enhancing spatial encoding, the proposed network consists of the position selection module and channel selection module that can adaptively aggregate multilevel features into a new informative feature from both position and channel dimensions. The position selection module integrates the vectors at the same spatial location across multilevel features with positionwise attention. Similarly, the channel selection module selectively aggregates the channel maps at the same channel location across multilevel features with channelwise attention. Positionwise features with different receptive fields and channelwise features with different pattern-specific responses are emphasized respectively depending on their correlations to actions, which are fused as a new informative feature for action recognition. The proposed FSNet can be inserted into different backbone networks flexibly, and extensive experiments are conducted on three benchmark action datasets, Kinetics, UCF101, and HMDB51. Experimental results show that FSNet is practical and can be collaboratively trained to boost the representational ability of existing networks. FSNet achieves superior performance against most top-tier models on Kinetics and all models on UCF101 and HMDB51.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰恰完成签到,获得积分10
9秒前
小周长大开飞船完成签到 ,获得积分10
11秒前
12秒前
12秒前
jw完成签到,获得积分10
14秒前
15122303完成签到,获得积分10
14秒前
linfordlu完成签到,获得积分0
16秒前
wlei发布了新的文献求助10
17秒前
幸福的千琴完成签到,获得积分10
25秒前
张小南完成签到,获得积分10
25秒前
TINA完成签到,获得积分10
27秒前
ymxlcfc完成签到 ,获得积分10
28秒前
研友_VZG7GZ应助Mason采纳,获得10
31秒前
中科院饲养员完成签到,获得积分10
32秒前
34秒前
凤兮完成签到 ,获得积分10
38秒前
大雄发布了新的文献求助10
38秒前
麦子完成签到 ,获得积分10
39秒前
41秒前
Aurora完成签到 ,获得积分10
42秒前
萨拉斐尔完成签到,获得积分10
43秒前
tjfwg完成签到,获得积分10
45秒前
萨拉斐尔发布了新的文献求助10
46秒前
48秒前
Dash完成签到 ,获得积分10
49秒前
FL完成签到,获得积分10
51秒前
白菜完成签到,获得积分10
52秒前
南风知我意完成签到,获得积分10
53秒前
Singularity应助科研通管家采纳,获得10
54秒前
高高应助科研通管家采纳,获得10
54秒前
高高应助科研通管家采纳,获得10
54秒前
54秒前
Dash关注了科研通微信公众号
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
ccc应助科研通管家采纳,获得10
54秒前
55秒前
Owen应助科研通管家采纳,获得10
55秒前
劲秉应助科研通管家采纳,获得10
55秒前
劲秉应助科研通管家采纳,获得10
55秒前
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674546
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787162
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611923
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488