MethaNet – An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery

羽流 温室气体 成像光谱仪 气象学 环境科学 甲烷 点源 遥感 计算机科学 图像分辨率 分光计 地质学 物理 光学 人工智能 海洋学 生物 量子力学 生态学
作者
Siraput Jongaramrungruang,Andrew K. Thorpe,Georgios Matheou,Christian Frankenberg
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112809-112809 被引量:36
标识
DOI:10.1016/j.rse.2021.112809
摘要

Methane is one of the most important anthropogenic greenhouse gases with a significant impact on the Earth's radiation budget and tropospheric background ozone. Despite a well-constrained global budget, quantification of local and regional methane emissions has proven challenging. Recent advancements in airborne remote sensing instruments such as from the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) provide 2-D observations of CH4 plume column enhancements at an unprecedented resolution of 1–5 m over large geographic areas. Quantifying an emission rate from observed plumes is a critical step for understanding local emission distributions and prioritizing mitigation efforts. However, there exists no method that can predict emission rates from detected plumes in real-time without ancillary data reliably. In order to predict methane point-source emissions directly from high resolution 2-D plume images without relying on other local measurements such as background wind speeds, we trained a convolutional neural network model called MethaNet. The training data was derived from large eddy simulations of methane plumes and realistic measurement noise over agricultural, desert and urban environments. Our model has a mean absolute percentage error for predicting unseen plumes under 17%, a significant improvement from previous methods that require wind information. Using MethaNet, a validation against a natural gas controlled-release experiment agrees to within the precision error estimate. Our results support the basis for the applicability of using deep learning techniques to quantify CH4 point sources in an automated manner over large geographical areas, not only for present and future airborne field campaigns but also for upcoming space-based observations in this decade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小玲子发布了新的文献求助10
1秒前
bird完成签到,获得积分10
1秒前
liujinjin完成签到,获得积分10
2秒前
叫我学霸男神裴完成签到,获得积分10
4秒前
内向汽车完成签到,获得积分10
4秒前
明亮梦山完成签到 ,获得积分10
4秒前
6666666666完成签到 ,获得积分10
5秒前
瀼瀼发布了新的文献求助10
6秒前
Eva完成签到 ,获得积分10
7秒前
8秒前
shunshun51213完成签到,获得积分10
8秒前
8秒前
WANDour完成签到,获得积分10
8秒前
末123456完成签到,获得积分10
11秒前
顾矜应助bmhs2017采纳,获得10
12秒前
今夜有雨发布了新的文献求助10
12秒前
Muccio完成签到 ,获得积分10
12秒前
蓝天0812完成签到,获得积分10
12秒前
13秒前
努力发文的医学僧完成签到,获得积分10
14秒前
开放素完成签到 ,获得积分0
14秒前
默默友儿完成签到 ,获得积分10
15秒前
ZY完成签到,获得积分10
17秒前
壮观的夏蓉完成签到,获得积分0
20秒前
VV完成签到,获得积分10
20秒前
WY完成签到,获得积分10
20秒前
QQ完成签到,获得积分10
20秒前
我的团长我的团完成签到,获得积分10
21秒前
Binbin完成签到 ,获得积分10
22秒前
22秒前
23秒前
仲夏完成签到,获得积分10
26秒前
方舟应助wenxianxiazai123采纳,获得10
27秒前
平平无奇历飞雨完成签到,获得积分10
29秒前
wuhanfei发布了新的文献求助10
29秒前
bae完成签到 ,获得积分10
29秒前
HM完成签到,获得积分10
29秒前
雅雅完成签到 ,获得积分20
30秒前
mmyhn发布了新的文献求助10
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963