MethaNet – An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery

羽流 温室气体 成像光谱仪 气象学 环境科学 甲烷 点源 遥感 计算机科学 图像分辨率 分光计 地质学 物理 光学 人工智能 海洋学 生物 量子力学 生态学
作者
Siraput Jongaramrungruang,Andrew K. Thorpe,Georgios Matheou,Christian Frankenberg
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112809-112809 被引量:36
标识
DOI:10.1016/j.rse.2021.112809
摘要

Methane is one of the most important anthropogenic greenhouse gases with a significant impact on the Earth's radiation budget and tropospheric background ozone. Despite a well-constrained global budget, quantification of local and regional methane emissions has proven challenging. Recent advancements in airborne remote sensing instruments such as from the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) provide 2-D observations of CH4 plume column enhancements at an unprecedented resolution of 1–5 m over large geographic areas. Quantifying an emission rate from observed plumes is a critical step for understanding local emission distributions and prioritizing mitigation efforts. However, there exists no method that can predict emission rates from detected plumes in real-time without ancillary data reliably. In order to predict methane point-source emissions directly from high resolution 2-D plume images without relying on other local measurements such as background wind speeds, we trained a convolutional neural network model called MethaNet. The training data was derived from large eddy simulations of methane plumes and realistic measurement noise over agricultural, desert and urban environments. Our model has a mean absolute percentage error for predicting unseen plumes under 17%, a significant improvement from previous methods that require wind information. Using MethaNet, a validation against a natural gas controlled-release experiment agrees to within the precision error estimate. Our results support the basis for the applicability of using deep learning techniques to quantify CH4 point sources in an automated manner over large geographical areas, not only for present and future airborne field campaigns but also for upcoming space-based observations in this decade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guohuameike完成签到,获得积分10
刚刚
科研小白鼠完成签到,获得积分20
刚刚
沉静的蜗牛完成签到,获得积分10
刚刚
小聖完成签到 ,获得积分10
1秒前
嘻嘻嘻发布了新的文献求助10
1秒前
luxx完成签到,获得积分10
2秒前
山大王yoyo发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
brd应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
坚定萤完成签到,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
wuyuzegang应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
lemonli完成签到,获得积分20
6秒前
6秒前
20231125完成签到,获得积分10
6秒前
6秒前
CipherSage应助DDKK采纳,获得10
6秒前
AronHUANG发布了新的文献求助10
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620