清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MethaNet – An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery

羽流 温室气体 成像光谱仪 气象学 环境科学 甲烷 点源 遥感 计算机科学 图像分辨率 分光计 地质学 物理 光学 人工智能 海洋学 生物 量子力学 生态学
作者
Siraput Jongaramrungruang,Andrew K. Thorpe,Georgios Matheou,Christian Frankenberg
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112809-112809 被引量:36
标识
DOI:10.1016/j.rse.2021.112809
摘要

Methane is one of the most important anthropogenic greenhouse gases with a significant impact on the Earth's radiation budget and tropospheric background ozone. Despite a well-constrained global budget, quantification of local and regional methane emissions has proven challenging. Recent advancements in airborne remote sensing instruments such as from the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) provide 2-D observations of CH4 plume column enhancements at an unprecedented resolution of 1–5 m over large geographic areas. Quantifying an emission rate from observed plumes is a critical step for understanding local emission distributions and prioritizing mitigation efforts. However, there exists no method that can predict emission rates from detected plumes in real-time without ancillary data reliably. In order to predict methane point-source emissions directly from high resolution 2-D plume images without relying on other local measurements such as background wind speeds, we trained a convolutional neural network model called MethaNet. The training data was derived from large eddy simulations of methane plumes and realistic measurement noise over agricultural, desert and urban environments. Our model has a mean absolute percentage error for predicting unseen plumes under 17%, a significant improvement from previous methods that require wind information. Using MethaNet, a validation against a natural gas controlled-release experiment agrees to within the precision error estimate. Our results support the basis for the applicability of using deep learning techniques to quantify CH4 point sources in an automated manner over large geographical areas, not only for present and future airborne field campaigns but also for upcoming space-based observations in this decade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
松松完成签到 ,获得积分10
12秒前
16秒前
20秒前
23秒前
XD824发布了新的文献求助10
24秒前
26秒前
如泣草芥完成签到,获得积分0
28秒前
33秒前
43秒前
叁月二完成签到 ,获得积分10
43秒前
48秒前
48秒前
量子星尘发布了新的文献求助10
55秒前
56秒前
苹果完成签到 ,获得积分10
58秒前
1分钟前
郑琦敏钰完成签到 ,获得积分10
1分钟前
1分钟前
立行完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
优雅的WAN完成签到 ,获得积分10
1分钟前
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
1分钟前
个性的紫菜应助hugeyoung采纳,获得30
1分钟前
靓丽宛亦完成签到 ,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Wen完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098