A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics

人工神经网络 冯·米塞斯屈服准则 有限元法 稳健性(进化) 计算机科学 等几何分析 非线性系统 人工智能 深度学习 机器学习 替代模型 算法 应用数学 数学优化 数学 物理 基因 热力学 量子力学 生物化学 化学
作者
Ehsan Haghighat,Maziar Raissi,Adrian Moure,Héctor Gómez,Rubén Juanes
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:379: 113741-113741 被引量:550
标识
DOI:10.1016/j.cma.2021.113741
摘要

We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network—thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫如冰发布了新的文献求助10
刚刚
realmar完成签到,获得积分10
刚刚
1秒前
英俊的铭应助着急的白羊采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
5秒前
6秒前
专注的树完成签到,获得积分10
6秒前
Hello应助赫如冰采纳,获得10
7秒前
Jeffrey完成签到,获得积分10
7秒前
不配.应助紧张的如南采纳,获得20
8秒前
热情诗云发布了新的文献求助10
9秒前
华仔应助耍酷的断缘采纳,获得10
9秒前
安静无招发布了新的文献求助10
9秒前
丁爽发布了新的文献求助30
10秒前
清脆的涔完成签到,获得积分10
11秒前
11秒前
蜡笔小新完成签到,获得积分10
11秒前
深情安青应助坦率尔琴采纳,获得10
11秒前
12秒前
珊珊发布了新的文献求助10
12秒前
辛勤从霜完成签到,获得积分10
13秒前
13秒前
思源应助李子木采纳,获得10
14秒前
14秒前
二十八画生完成签到 ,获得积分10
17秒前
A380发布了新的文献求助10
17秒前
17秒前
17秒前
不配.应助小耳朵有货采纳,获得10
18秒前
wdnyrrc发布了新的文献求助10
19秒前
20秒前
Sun发布了新的文献求助10
20秒前
无花果应助Leseuel采纳,获得10
21秒前
此晴可待完成签到,获得积分10
22秒前
大个应助熊小子爱学习采纳,获得10
22秒前
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046