Learning spectro-temporal representations of complex sounds with parameterized neural networks

可解释性 计算机科学 斑马雀 语音识别 听觉皮层 人工神经网络 任务(项目管理) 参数化复杂度 图层(电子) 多样性(控制论) 人工智能 模式识别(心理学) 心理学 经济 算法 神经科学 有机化学 化学 管理
作者
Rachid Riad,Julien Karadayi,Anne‐Catherine Bachoud‐Lévi,Emmanuel Dupoux
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:150 (1): 353-366 被引量:5
标识
DOI:10.1121/10.0005482
摘要

Deep learning models have become potential candidates for auditory neuroscience research, thanks to their recent successes in a variety of auditory tasks, yet these models often lack interpretability to fully understand the exact computations that have been performed. Here, we proposed a parametrized neural network layer, which computes specific spectro-temporal modulations based on Gabor filters [learnable spectro-temporal filters (STRFs)] and is fully interpretable. We evaluated this layer on speech activity detection, speaker verification, urban sound classification, and zebra finch call type classification. We found that models based on learnable STRFs are on par for all tasks with state-of-the-art and obtain the best performance for speech activity detection. As this layer remains a Gabor filter, it is fully interpretable. Thus, we used quantitative measures to describe distribution of the learned spectro-temporal modulations. Filters adapted to each task and focused mostly on low temporal and spectral modulations. The analyses show that the filters learned on human speech have similar spectro-temporal parameters as the ones measured directly in the human auditory cortex. Finally, we observed that the tasks organized in a meaningful way: the human vocalization tasks closer to each other and bird vocalizations far away from human vocalizations and urban sounds tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭子仪发布了新的文献求助10
2秒前
科研通AI6应助范fan采纳,获得30
2秒前
挽月白完成签到,获得积分10
2秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
4秒前
6秒前
6秒前
hony完成签到,获得积分10
9秒前
斯文败类应助郭子仪采纳,获得30
9秒前
10秒前
Thien应助lyp采纳,获得10
10秒前
10秒前
yyanxuemin919发布了新的文献求助10
11秒前
研友_Lmb15n发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
上帝粒子应助Liu采纳,获得50
14秒前
李伟峰完成签到,获得积分10
14秒前
15秒前
wy发布了新的文献求助10
15秒前
冷酷莫言发布了新的文献求助10
16秒前
qwer发布了新的文献求助10
16秒前
17秒前
嘿嘿发布了新的文献求助10
17秒前
jiabu完成签到 ,获得积分10
18秒前
学术费物发布了新的文献求助10
18秒前
18秒前
律香川照之完成签到,获得积分10
20秒前
看100篇文献完成签到,获得积分10
21秒前
sylus发布了新的文献求助10
22秒前
太兰完成签到 ,获得积分10
23秒前
wang完成签到,获得积分20
23秒前
24秒前
spc68应助chen采纳,获得10
24秒前
英姑应助暗中讨饭采纳,获得10
27秒前
只争朝夕应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432