Learning spectro-temporal representations of complex sounds with parameterized neural networks

可解释性 计算机科学 斑马雀 语音识别 听觉皮层 人工神经网络 任务(项目管理) 参数化复杂度 图层(电子) 多样性(控制论) 人工智能 模式识别(心理学) 心理学 经济 算法 神经科学 有机化学 化学 管理
作者
Rachid Riad,Julien Karadayi,Anne‐Catherine Bachoud‐Lévi,Emmanuel Dupoux
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:150 (1): 353-366 被引量:5
标识
DOI:10.1121/10.0005482
摘要

Deep learning models have become potential candidates for auditory neuroscience research, thanks to their recent successes in a variety of auditory tasks, yet these models often lack interpretability to fully understand the exact computations that have been performed. Here, we proposed a parametrized neural network layer, which computes specific spectro-temporal modulations based on Gabor filters [learnable spectro-temporal filters (STRFs)] and is fully interpretable. We evaluated this layer on speech activity detection, speaker verification, urban sound classification, and zebra finch call type classification. We found that models based on learnable STRFs are on par for all tasks with state-of-the-art and obtain the best performance for speech activity detection. As this layer remains a Gabor filter, it is fully interpretable. Thus, we used quantitative measures to describe distribution of the learned spectro-temporal modulations. Filters adapted to each task and focused mostly on low temporal and spectral modulations. The analyses show that the filters learned on human speech have similar spectro-temporal parameters as the ones measured directly in the human auditory cortex. Finally, we observed that the tasks organized in a meaningful way: the human vocalization tasks closer to each other and bird vocalizations far away from human vocalizations and urban sounds tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仪锦文完成签到,获得积分10
1秒前
酷波er应助痴情的博超采纳,获得10
1秒前
amy完成签到,获得积分10
1秒前
EgbertW完成签到,获得积分10
2秒前
2秒前
奇怪人类发布了新的文献求助10
2秒前
科研通AI2S应助huan采纳,获得10
2秒前
3秒前
怡然的友容完成签到,获得积分10
3秒前
萨尔莫斯发布了新的文献求助10
3秒前
ddddd完成签到,获得积分10
3秒前
小二郎应助YAMO一采纳,获得10
4秒前
hkh发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
科研通AI2S应助something采纳,获得10
4秒前
Jorna发布了新的文献求助10
4秒前
小吴发布了新的文献求助10
5秒前
李Li完成签到 ,获得积分10
5秒前
oyq完成签到,获得积分10
6秒前
语物完成签到,获得积分10
6秒前
仪锦文发布了新的文献求助10
6秒前
6秒前
7秒前
石头完成签到,获得积分10
7秒前
赤练仙子发布了新的文献求助10
7秒前
Wtony完成签到 ,获得积分10
8秒前
8秒前
真实的依白应助朴实山兰采纳,获得20
8秒前
wan完成签到 ,获得积分20
9秒前
Lucas应助认真的恶天采纳,获得10
9秒前
科研顺利发布了新的文献求助10
9秒前
怕黑的画板完成签到,获得积分10
9秒前
打打应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
彭于彦祖应助科研通管家采纳,获得30
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
10秒前
ddd应助科研通管家采纳,获得20
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128