Improvement of PM2.5 and O3 forecasting by integration of 3D numerical simulation with deep learning techniques

CMAQ 均方误差 空气质量指数 环境科学 天气研究与预报模式 气象学 污染物 空气污染 微粒 数学 统计 地理 生态学 化学 有机化学 生物
作者
Haochen Sun,Jimmy Chi Hung Fung,Yiang Chen,Wanying Chen,Zhenning Li,Yeqi Huang,Changqing Lin,Mingyun Hu,Xingcheng Lu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:75: 103372-103372 被引量:25
标识
DOI:10.1016/j.scs.2021.103372
摘要

Air pollution is a major impediment to the sustainable development of cities and society. Governed by emission characteristics and meteorological conditions, the formation and destruction of fine particulate matter (PM2.5) and ozone (O3) are complicated, and accurate predictions of the concentrations of these two major secondary atmospheric pollutants remain challenging. In this study, by combining meteorological and air pollutant data from ground observations and the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model simulations, a deep learning model structure based on long short-term memory layers (LSTM) was developed and applied to predict the PM2.5 and O3 concentrations in the future 48 h period. The forecasting improvement was extended to the whole Greater Bay Area by introducing a spatial correction (SC) method to the CMAQ simulation results. Compared with the original CMAQ forecast, the new method gained a 26% reduction in mean absolute error (MAE) and a 33% reduction in root mean square error (RMSE), respectively, in terms of PM2.5; it also achieved a 40% reduction in MAE and a 34% reduction in RMSE in terms of O3. SC method, applied to the whole GBA region, also reduced the overall MAE and RMSE by 10% and 17% in terms of PM2.5 and by 31% and 25% in terms of O3, respectively. Using an AI approach, our study provides new perspectives for further improving air quality forecasting from both temporal and spatial perspectives, thus increasing the smartness and resilience of the cities and promoting environmentally sustainable development in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是站长才怪应助Khr1stINK采纳,获得10
刚刚
1秒前
xh完成签到,获得积分10
2秒前
para_团结完成签到,获得积分10
3秒前
怡然剑成发布了新的文献求助10
3秒前
4秒前
4秒前
ipeakkka发布了新的文献求助10
4秒前
George完成签到,获得积分10
6秒前
WDK完成签到,获得积分10
6秒前
情怀应助敏感的芷采纳,获得10
6秒前
Orange应助方勇飞采纳,获得10
7秒前
FashionBoy应助烂漫驳采纳,获得10
7秒前
8秒前
9秒前
大鱼完成签到,获得积分10
9秒前
9秒前
lu完成签到,获得积分10
10秒前
Murphy完成签到 ,获得积分10
10秒前
斯文败类应助大方嵩采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得30
11秒前
hh应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得20
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得200
12秒前
orixero应助科研通管家采纳,获得10
12秒前
许多知识发布了新的文献求助10
13秒前
FashionBoy应助su采纳,获得10
13秒前
13秒前
运敬完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824