Improvement of PM2.5 and O3 forecasting by integration of 3D numerical simulation with deep learning techniques

CMAQ 均方误差 空气质量指数 环境科学 天气研究与预报模式 气象学 污染物 空气污染 微粒 数学 统计 地理 生态学 化学 有机化学 生物
作者
Haochen Sun,Jimmy Chi Hung Fung,Yiang Chen,Wanying Chen,Zhenning Li,Yeqi Huang,Changqing Lin,Mingyun Hu,Xingcheng Lu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:75: 103372-103372 被引量:25
标识
DOI:10.1016/j.scs.2021.103372
摘要

Air pollution is a major impediment to the sustainable development of cities and society. Governed by emission characteristics and meteorological conditions, the formation and destruction of fine particulate matter (PM2.5) and ozone (O3) are complicated, and accurate predictions of the concentrations of these two major secondary atmospheric pollutants remain challenging. In this study, by combining meteorological and air pollutant data from ground observations and the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model simulations, a deep learning model structure based on long short-term memory layers (LSTM) was developed and applied to predict the PM2.5 and O3 concentrations in the future 48 h period. The forecasting improvement was extended to the whole Greater Bay Area by introducing a spatial correction (SC) method to the CMAQ simulation results. Compared with the original CMAQ forecast, the new method gained a 26% reduction in mean absolute error (MAE) and a 33% reduction in root mean square error (RMSE), respectively, in terms of PM2.5; it also achieved a 40% reduction in MAE and a 34% reduction in RMSE in terms of O3. SC method, applied to the whole GBA region, also reduced the overall MAE and RMSE by 10% and 17% in terms of PM2.5 and by 31% and 25% in terms of O3, respectively. Using an AI approach, our study provides new perspectives for further improving air quality forecasting from both temporal and spatial perspectives, thus increasing the smartness and resilience of the cities and promoting environmentally sustainable development in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无辜雅柔完成签到,获得积分20
1秒前
myn1990发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
蒋依伶完成签到,获得积分20
2秒前
bo发布了新的文献求助10
2秒前
斯文的炳完成签到,获得积分10
3秒前
猪猪hero完成签到,获得积分10
3秒前
一墨发布了新的文献求助10
3秒前
3秒前
3秒前
曾经二娘发布了新的文献求助10
3秒前
周舟完成签到 ,获得积分10
4秒前
5秒前
文小杰完成签到,获得积分10
5秒前
kento发布了新的文献求助10
6秒前
星辰大海应助小会采纳,获得10
6秒前
香蕉觅云应助无限的高烽采纳,获得10
6秒前
vivi先生发布了新的文献求助10
6秒前
白菜包子发布了新的文献求助10
7秒前
8秒前
毛豆应助HR112采纳,获得10
8秒前
llllllll发布了新的文献求助10
9秒前
9秒前
NancyDee完成签到,获得积分10
9秒前
DDJoy完成签到,获得积分10
10秒前
慕青应助学习猴采纳,获得10
10秒前
可耐的三德完成签到 ,获得积分10
10秒前
热心天佑发布了新的文献求助10
10秒前
peanuttt完成签到,获得积分10
11秒前
友好蚂蚁完成签到,获得积分10
11秒前
任元元完成签到 ,获得积分10
11秒前
王先生完成签到 ,获得积分10
13秒前
13秒前
加油完成签到,获得积分20
13秒前
sapphire_yy完成签到,获得积分10
13秒前
Owen应助vivi先生采纳,获得10
13秒前
peanuttt发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311924
求助须知:如何正确求助?哪些是违规求助? 2944704
关于积分的说明 8520803
捐赠科研通 2620313
什么是DOI,文献DOI怎么找? 1432777
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650077