Crystal Symmetry Engineering in Epitaxial Perovskite Superlattices

材料科学 超晶格 异质结 钙钛矿(结构) 外延 应变工程 凝聚态物理 铁电性 晶格常数 Crystal(编程语言) 局部对称性 晶体学点群 晶体结构 衍射 化学物理 结晶学 纳米技术 光电子学 图层(电子) 电介质 光学 物理 化学 计算机科学 程序设计语言 量子力学
作者
Xiang Ding,Baishun Yang,Haiyan Leng,Jae Hyuch Jang,Junrui Zhao,Chao Zhang,Sa Zhang,Guixin Cao,Ji Zhang,Rohan Mishra,Jiabao Yi,Dongchen Qi,Zheng Gai,Xiaotao Zu,Sean Li,Bing Huang,Albina Y. Borisevich,Liang Qiao
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (47) 被引量:10
标识
DOI:10.1002/adfm.202106466
摘要

Abstract Interface plays a critical role in determining the physical properties and device performance of heterostructures. Traditionally, lattice mismatch, resulting from the different lattice constants of the heterostructure, can induce epitaxial strain. Over past decades, strain engineering has been demonstrated as a useful strategy to manipulate the functionalities of the interface. However, mismatch of crystal symmetry at the interface is relatively less studied due to the difficulty of atomically structural characterization, particularly for the epitaxy of low symmetry correlated materials on the high symmetry substrates. Overlooking those phenomena restrict the understanding of the intrinsic properties of the as‐ determined heterostructure, resulting in some long‐standing debates including the origin of magnetic and ferroelectric dead layers. Here, perovskite LaCoO 3 ‐SrTiO 3 superlattice (SL) is used as a model system to show that the crystal symmetry effect can be isolated by the existing interface strain. Combining the state‐of‐art diffraction and electron microscopy, it is found that the symmetry mismatch of LaCoO 3 ‐SrTiO 3 SL can be tuned by manipulating the SrTiO 3 layer thickness to artificially control the magnetic properties. The work suggests that crystal symmetry mismatch can also be designed and engineered to act as an effective strategy to generate functional properties of perovskite oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
gishisei发布了新的文献求助10
3秒前
LL完成签到,获得积分10
4秒前
minghanl完成签到,获得积分10
4秒前
乐乐应助时尚的开山采纳,获得10
4秒前
4秒前
6秒前
无奈醉柳完成签到 ,获得积分20
7秒前
意安发布了新的文献求助10
7秒前
大模型应助土星采纳,获得10
7秒前
8秒前
8R60d8应助liyi采纳,获得10
9秒前
卡皮巴拉发布了新的文献求助10
9秒前
9秒前
10秒前
乐乐应助橘络采纳,获得10
11秒前
重要手机发布了新的文献求助10
11秒前
11秒前
开心夜云完成签到,获得积分10
15秒前
小付发布了新的文献求助10
15秒前
李健应助天亮了采纳,获得10
15秒前
16秒前
19秒前
充电宝应助大大豆腐干采纳,获得10
19秒前
20秒前
张宇发布了新的文献求助10
20秒前
xxxx完成签到 ,获得积分10
21秒前
时尚的开山完成签到,获得积分10
21秒前
pcx发布了新的文献求助10
25秒前
25秒前
28秒前
28秒前
受伤金鑫应助Chancerain采纳,获得10
29秒前
无餍应助H_C采纳,获得10
29秒前
天亮了发布了新的文献求助10
30秒前
天天快乐应助shingai采纳,获得10
30秒前
31秒前
星辰大海应助称心太阳采纳,获得10
31秒前
科研通AI2S应助XLT采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589