控制理论(社会学)
反推
人工神经网络
阻抗控制
观察员(物理)
计算机科学
自适应控制
趋同(经济学)
Lyapunov稳定性
李雅普诺夫函数
理论(学习稳定性)
补偿(心理学)
扰动(地质)
国家观察员
控制工程
控制(管理)
工程类
机器人
人工智能
非线性系统
机器学习
经济
古生物学
物理
生物
量子力学
经济增长
心理学
精神分析
作者
Gang Li,Xinkai Chen,Jinpeng Yu,Jiapeng Liu
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2022-03-01
卷期号:69 (3): 1412-1416
被引量:25
标识
DOI:10.1109/tcsii.2021.3109257
摘要
This brief proposes an adaptive neural network-based finite-time impedance control method for constrained robotic manipulators with disturbance observer. Firstly, by combining barrier Lyapunov functions with the finite-time stability control theory, the control system has a faster convergence rate without violating the full state constraints. Secondly, the adaptive neural network is introduced to approximate the unmodeled dynamics and a disturbance observer is designed to compensate for the unknown time-varying disturbances. Then, the command filtered control technique with error compensation mechanism is used to deal with the “explosion of complexity” of traditional backstepping and improve the control accuracy. The simulation results show the effectiveness of the proposed control method.
科研通智能强力驱动
Strongly Powered by AbleSci AI