Electric Fano resonance-based terahertz metasensors

诺共振 电场 太赫兹辐射 偶极子 激光线宽 材料科学 等离子体子 共振(粒子物理) 法诺平面 光电子学 电偶极矩 光学 物理 原子物理学 激光器 纯数学 量子力学 数学
作者
Ride Wang,Lei Xu,Jiayi Wang,Lang Sun,Yanan Jiao,Yuan Meng,Shuo Chen,Chao Chang,Chunhai Fan
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:13 (44): 18467-18472 被引量:107
标识
DOI:10.1039/d1nr04477j
摘要

An ultra-sensitive THz metasensor is presented based on quasi-BIC Fano resonance, which can distinguish extremely dilute concentrations (nM) of solutions. It provides a nondestructive sensing approach for disease prevention and diagnosis. However, the main drawback limiting the performance of THz-based bio-chemical sensors is the weak interaction between the optical field and the analyte, the characteristic scale of which is mismatched with the THz wavelength, leading to low sensitivity. Herein, we present an ultra-sensitive THz metasensor based on an electric Fano resonant metasurface which consists of three gold microrods arranged periodically. The designed electric Fano resonance provides a strong near-field enhancement near the surface of the microstructure, significantly boosting the light-analyte interactions and thus the sensitivity. Such an electric Fano resonance is formed by the interference between a leaky electric dipole resonance and a bound toroidal dipole mode which is a symmetry-protected bound state in the continuum supported by the sub-diffractive periodic system here. Owing to the strong electric fields generated near the interface of our microstructure around the toroidal dipole BIC, the proposed structure can distinguish extremely dilute concentrations (nM) of solutions. Importantly, by controlling the degree of geometrical asymmetry, the BIC-inspired mechanism provides an important and simple tool to engineer and tailor the linewidth and Q-factor of our proposed electric Fano resonance, indicating the ability to realize different biosensors for different optical regimes. Our results open new possibilities to realize a non-destructive and non-contact quantitative inspection of low-concentration solutions, providing a useful sensing approach for disease prevention and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Lu采纳,获得10
1秒前
1秒前
1秒前
Bressanone发布了新的文献求助10
2秒前
妙蛙完成签到,获得积分10
3秒前
4秒前
111111111发布了新的文献求助10
5秒前
妙蛙发布了新的文献求助10
7秒前
8秒前
爱笑紫菜发布了新的文献求助30
10秒前
10秒前
11秒前
李爱国应助111111111采纳,获得10
11秒前
tay发布了新的文献求助10
12秒前
科研通AI5应助ffff采纳,获得10
13秒前
过氧化氢发布了新的文献求助30
15秒前
感动黄豆发布了新的文献求助10
16秒前
钱宇成发布了新的文献求助10
16秒前
YJ888发布了新的文献求助10
16秒前
vincen91完成签到,获得积分10
20秒前
Leach完成签到 ,获得积分10
21秒前
长乐完成签到,获得积分10
22秒前
FashionBoy应助院士人启动采纳,获得10
26秒前
27秒前
27秒前
AptRank完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
焦糖布丁的滋味完成签到,获得积分10
28秒前
29秒前
隐形的觅波完成签到 ,获得积分10
30秒前
儒雅南风完成签到 ,获得积分10
31秒前
小马甲应助科研通管家采纳,获得10
32秒前
打打应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
Bio应助科研通管家采纳,获得30
32秒前
慕青应助科研通管家采纳,获得10
32秒前
32秒前
在水一方应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105