Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors

压阻效应 人工智能 计算机视觉 对象(语法) 过程(计算) 机器人 触觉传感器 计算机科学 流离失所(心理学) 材料科学 心理学 光电子学 操作系统 心理治疗师
作者
Zhiqiang Gao,Bing Ren,Zhaozhou Fang,Huiqiang Kang,Jing Han,Jie Li
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:332: 113121-113121 被引量:53
标识
DOI:10.1016/j.sna.2021.113121
摘要

The application of flexible wearable sensors in the grasping process of robot hand can recognize the contour, soft and hard, material, surface temperature and other information of the grasping object, which can effectively improve the intelligent level of the robot. In this work, a method of object contour recognition is proposed by combining the flexible PVDF polymer piezoelectric sensor and high conductivity hydrogel piezoresistive sensor aiming at the problem of profile recognition for objects of the same or similar material. The response of flexible piezoresistive sensor to the static strain is used to sense the angular displacement of robot fingers, and then the shape and size of the object is recognized indirectly. At the same time, the flexible piezoelectric sensor is used as the fingertip tactile sensor to reflect the surface morphology of the object through the dynamic strain information when touching the object. In the whole process of grasping the object, the dual-mode strain information is fully used to realize the recognition of the shape, size and surface morphology of the object. Combining these information, the accurate recognition of the object contour can be further realized. In the experiments, six objects with different shape and four objects with different surface morphology are recognized to verify the feasibility of piezoresistive sensors and piezoelectric sensors respectively. In a comprehensive experiment, eight objects made of the same rubber material with different shape, size and surface morphology are recognized, and the average recognition rate is about 84%, which shows good classification advantages for the objects with similar shape, size and material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可可可汁完成签到 ,获得积分10
1秒前
无奈的尔容完成签到,获得积分10
3秒前
Xiaohu完成签到,获得积分10
4秒前
XIEQ发布了新的文献求助10
5秒前
5秒前
科研通AI6应助yyanxuemin919采纳,获得10
7秒前
7秒前
9秒前
11秒前
一头猪发布了新的文献求助10
12秒前
Bazinga完成签到,获得积分10
12秒前
嗯嗯嗯完成签到,获得积分10
13秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
13秒前
14秒前
嘿嘿发布了新的文献求助10
14秒前
able完成签到 ,获得积分10
15秒前
16秒前
嗯嗯嗯发布了新的文献求助10
17秒前
丘比特应助度ewf采纳,获得10
18秒前
丽丽丽发布了新的文献求助10
18秒前
yyanxuemin919发布了新的文献求助10
18秒前
蘑菇完成签到 ,获得积分10
21秒前
jam发布了新的文献求助10
21秒前
22秒前
烟花应助ccc采纳,获得10
23秒前
拉长的诗蕊完成签到,获得积分10
23秒前
24秒前
大妙妙完成签到 ,获得积分10
27秒前
27秒前
里里完成签到 ,获得积分10
28秒前
韩妙发布了新的文献求助10
29秒前
科研通AI6应助丽丽丽采纳,获得10
30秒前
太渊完成签到 ,获得积分10
30秒前
ccc发布了新的文献求助10
32秒前
爆米花应助chen采纳,获得10
35秒前
赘婿应助fahbfafajk采纳,获得10
37秒前
37秒前
李健应助韩妙采纳,获得10
38秒前
39秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432