Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors

压阻效应 人工智能 计算机视觉 对象(语法) 过程(计算) 机器人 触觉传感器 计算机科学 流离失所(心理学) 材料科学 心理学 光电子学 操作系统 心理治疗师
作者
Zhiqiang Gao,Bing Ren,Zhaozhou Fang,Huiqiang Kang,Jing Han,Jie Li
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:332: 113121-113121 被引量:40
标识
DOI:10.1016/j.sna.2021.113121
摘要

The application of flexible wearable sensors in the grasping process of robot hand can recognize the contour, soft and hard, material, surface temperature and other information of the grasping object, which can effectively improve the intelligent level of the robot. In this work, a method of object contour recognition is proposed by combining the flexible PVDF polymer piezoelectric sensor and high conductivity hydrogel piezoresistive sensor aiming at the problem of profile recognition for objects of the same or similar material. The response of flexible piezoresistive sensor to the static strain is used to sense the angular displacement of robot fingers, and then the shape and size of the object is recognized indirectly. At the same time, the flexible piezoelectric sensor is used as the fingertip tactile sensor to reflect the surface morphology of the object through the dynamic strain information when touching the object. In the whole process of grasping the object, the dual-mode strain information is fully used to realize the recognition of the shape, size and surface morphology of the object. Combining these information, the accurate recognition of the object contour can be further realized. In the experiments, six objects with different shape and four objects with different surface morphology are recognized to verify the feasibility of piezoresistive sensors and piezoelectric sensors respectively. In a comprehensive experiment, eight objects made of the same rubber material with different shape, size and surface morphology are recognized, and the average recognition rate is about 84%, which shows good classification advantages for the objects with similar shape, size and material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助赵小可可可可采纳,获得10
刚刚
科研通AI5应助kento采纳,获得30
1秒前
nkmenghan发布了新的文献求助10
2秒前
5秒前
redondo10完成签到,获得积分0
6秒前
7秒前
乔qiao发布了新的文献求助30
10秒前
WZ0904发布了新的文献求助10
11秒前
poegtam完成签到,获得积分10
12秒前
大胆盼兰发布了新的文献求助10
13秒前
wuyan204完成签到 ,获得积分10
14秒前
windcreator完成签到,获得积分10
14秒前
redondo5完成签到,获得积分0
14秒前
wangrswjx完成签到 ,获得积分10
14秒前
科研通AI5应助su采纳,获得10
14秒前
17秒前
19秒前
小二郎应助嘻嘻采纳,获得10
19秒前
yun完成签到 ,获得积分10
20秒前
20秒前
22秒前
健忘曼冬发布了新的文献求助10
22秒前
redondo完成签到,获得积分10
22秒前
momo完成签到,获得积分10
23秒前
希望天下0贩的0应助meng采纳,获得10
24秒前
龙歪歪发布了新的文献求助10
25秒前
25秒前
暮城完成签到,获得积分10
25秒前
26秒前
云墨完成签到 ,获得积分10
26秒前
28秒前
29秒前
Akim应助caoyy采纳,获得10
29秒前
30秒前
科研通AI2S应助DreamMaker采纳,获得10
30秒前
33秒前
zho发布了新的文献求助30
33秒前
33秒前
ywang发布了新的文献求助10
33秒前
ZD小草完成签到 ,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849