已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Replace and repair: Biomimetic bioprinting for effective muscle engineering

3D生物打印 再生医学 再生(生物学) 骨骼肌 心肌细胞 神经科学 细胞功能 组织工程 计算机科学 医学 生物医学工程 干细胞 生物 细胞生物学 细胞 解剖 遗传学
作者
Cooper Blake,Oliver Massey,Mitchell Boyd‐Moss,Kate Firipis,Aaqil Rifai,Stephanie Franks,Anita Quigley,Robert M. I. Kapsa,David R. Nisbet,Richard J. Williams
出处
期刊:APL bioengineering [American Institute of Physics]
卷期号:5 (3) 被引量:10
标识
DOI:10.1063/5.0040764
摘要

The debilitating effects of muscle damage, either through ischemic injury or volumetric muscle loss (VML), can have significant impacts on patients, and yet there are few effective treatments. This challenge arises when function is degraded due to significant amounts of skeletal muscle loss, beyond the regenerative ability of endogenous repair mechanisms. Currently available surgical interventions for VML are quite invasive and cannot typically restore function adequately. In response to this, many new bioengineering studies implicate 3D bioprinting as a viable option. Bioprinting for VML repair includes three distinct phases: printing and seeding, growth and maturation, and implantation and application. Although this 3D bioprinting technology has existed for several decades, the advent of more advanced and novel printing techniques has brought us closer to clinical applications. Recent studies have overcome previous limitations in diffusion distance with novel microchannel construct architectures and improved myotubule alignment with highly biomimetic nanostructures. These structures may also enhance angiogenic and nervous ingrowth post-implantation, though further research to improve these parameters has been limited. Inclusion of neural cells has also shown to improve myoblast maturation and development of neuromuscular junctions, bringing us one step closer to functional, implantable skeletal muscle constructs. Given the current state of skeletal muscle 3D bioprinting, the most pressing future avenues of research include furthering our understanding of the physical and biochemical mechanisms of myotube development and expanding our control over macroscopic and microscopic construct structures. Further to this, current investigation needs to be expanded from immunocompromised rodent and murine myoblast models to more clinically applicable human cell lines as we move closer to viable therapeutic implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Su采纳,获得10
1秒前
2秒前
彭于晏应助土豆荷包蛋采纳,获得10
2秒前
十七完成签到,获得积分10
2秒前
Yon完成签到 ,获得积分10
4秒前
5秒前
5秒前
wanci应助单纯的雅香采纳,获得10
6秒前
Nancy0818完成签到 ,获得积分10
8秒前
bjbmtxy应助lin采纳,获得20
8秒前
9秒前
李友健完成签到 ,获得积分10
10秒前
无聊的人完成签到 ,获得积分10
11秒前
fang发布了新的文献求助10
11秒前
11秒前
田所浩二完成签到 ,获得积分10
12秒前
凶狠的猎豹完成签到,获得积分10
14秒前
情怀应助Anhydride采纳,获得10
14秒前
小柒发布了新的文献求助10
15秒前
Yan完成签到,获得积分10
18秒前
lyabigale完成签到 ,获得积分10
18秒前
Ava应助清爽的音响采纳,获得10
19秒前
传奇3应助莫里亚蒂采纳,获得10
23秒前
23秒前
潇潇雨歇完成签到,获得积分10
23秒前
焱焱不忘完成签到 ,获得积分10
23秒前
rofsc完成签到 ,获得积分10
27秒前
perdgs完成签到,获得积分10
27秒前
27秒前
27秒前
27秒前
28秒前
29秒前
小凯完成签到 ,获得积分10
30秒前
31秒前
QQWRV完成签到,获得积分10
31秒前
31秒前
David完成签到,获得积分10
32秒前
科研通AI5应助HJJHJH采纳,获得10
33秒前
www发布了新的文献求助30
33秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477379
求助须知:如何正确求助?哪些是违规求助? 3068812
关于积分的说明 9109727
捐赠科研通 2760297
什么是DOI,文献DOI怎么找? 1514760
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699566