An Upgraded Siamese Neural Network for Motion Tracking in Ultrasound Image Sequences.

跟踪(教育) 卷积神经网络 模式识别(心理学) 超声波 跟踪系统 特征(语言学)
作者
Skanda Bharadwaj,Sumukha Prasad,Mohamed Almekkawy
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (12): 3515-3527 被引量:2
标识
DOI:10.1109/tuffc.2021.3095299
摘要

Deep learning is heavily being borrowed to solve problems in medical imaging applications, and Siamese neural networks are the front runners of motion tracking. In this article, we propose to upgrade one such Siamese architecture-based neural network for robust and accurate landmark tracking in ultrasound images to improve the quality of image-guided radiation therapy. Although several researchers have improved the Siamese architecture-based networks with sophisticated detection modules and by incorporating transfer learning, the inherent assumptions of the constant position model and the missing motion model remain unaddressed limitations. In our proposed model, we overcome these limitations by introducing two modules into the original architecture. We employ a reference template update to resolve the constant position model and a linear Kalman filter (LKF) to address the missing motion model. Moreover, we demonstrate that the proposed architecture provides promising results without transfer learning. The proposed model was submitted to an open challenge organized by MICCAI and was evaluated exhaustively on the Liver US Tracking (CLUST) 2D dataset. Experimental results proved that the proposed model tracked the landmarks with promising accuracy. Furthermore, we also induced synthetic occlusions to perform a qualitative analysis of the proposed approach. The evaluations were performed on the training set of the CLUST 2D dataset. The proposed method outperformed the original Siamese architecture by a significant margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanks完成签到,获得积分10
2秒前
yhb关闭了yhb文献求助
4秒前
5秒前
li完成签到,获得积分20
5秒前
谭yuanjun关注了科研通微信公众号
5秒前
Hello应助shanks采纳,获得10
7秒前
云泥完成签到 ,获得积分10
8秒前
zou发布了新的文献求助10
8秒前
9秒前
just flow发布了新的文献求助10
10秒前
10秒前
欣慰汉堡完成签到,获得积分20
10秒前
Cker完成签到,获得积分10
10秒前
深情安青应助ffhjlfwex采纳,获得10
12秒前
李爱国应助勤能补拙采纳,获得10
14秒前
14秒前
上官若男应助li采纳,获得10
15秒前
zls发布了新的文献求助10
15秒前
15秒前
谭yuanjun完成签到,获得积分10
21秒前
苏蛋蛋i发布了新的文献求助10
22秒前
萧水白应助ACE采纳,获得10
22秒前
田様应助jiunuan采纳,获得30
23秒前
23秒前
home完成签到,获得积分10
24秒前
29秒前
无私的盼望完成签到 ,获得积分10
30秒前
烂漫的绝悟完成签到 ,获得积分10
31秒前
夏季霸吹发布了新的文献求助10
33秒前
34秒前
大个应助迅速满天采纳,获得10
34秒前
SciGPT应助积极的曼彤采纳,获得10
36秒前
38秒前
39秒前
41秒前
车水完成签到 ,获得积分10
42秒前
陈小黑应助wmq采纳,获得10
44秒前
大个应助Cathy采纳,获得10
45秒前
夏季霸吹完成签到,获得积分20
45秒前
糯米种子完成签到,获得积分0
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613