Spatiotemporal transcriptome at single-cell resolution reveals key radial glial cell population in axolotl telencephalon development and regeneration

再生(生物学) 轴突 生物 大脑 神经科学 人口 细胞生物学 中枢神经系统 社会学 人口学
作者
Xiaoyu Wei,Sulei Fu,Hanbo Li,Yang Liu,Shuai Wang,Weimin Feng,Yunzhi Yang,Xiawei Liu,Yan-Yun Zeng,Mengnan Cheng,Yiwei Lai,Xiaojie Qiu,Liang Wu,Nannan Zhang,Yujia Jiang,Jiangshan Xu,Xiaoshan Su,Cheng Peng,Lei Han,Wilson Pak-Kin Lou,Chuanyu Liu,Yue Yuan,Kailong Ma,Tao Yang,Xiangyu Pan,Shang Gao,Ao Chen,Miguel A. Esteban,Huanming Yang,Wei Wang,Guangyi Fan,Longqi Liu,Liang Chen,Xun Xu,Ji‐Feng Fei,Ying Gu
标识
DOI:10.1101/2021.10.23.465550
摘要

SUMMARY Brain regeneration requires a precise coordination of complex responses in a time- and region-specific manner. Identifying key cell types and molecules that direct brain regeneration would provide potential targets for the advance of regenerative medicine. However, progress in the field has been hampered largely due to limited regeneration capacity of the mammalian brain and understanding of the regeneration process at both cellular and molecular level. Here, using axolotl brain with extrodinary regeneration ability upon injury, and the SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we reconstructed the first architecture of axolotl telencephalon with gene expression profiling at single-cell resolution, and fine cell dynamics maps throughout development and regeneration. Intriguingly, we discovered a marked heterogeneity of radial glial cell (RGC) types with distinct behaviors. Of note, one subtype of RGCs is activated since early regeneration stages and proliferates while other RGCs remain dormant. Such RGC subtype appears to be the major cell population involved in early wound healing response and gradually covers the injured area before presumably transformed into the lost neurons. Altogether, our work systematically decoded the complex cellular and molecular dynamics of axolotl telencephalon in development and regeneration, laying the foundation for studying the regulatory mechanism of brain regeneration in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqingqing发布了新的文献求助10
刚刚
冷静雅香发布了新的文献求助10
1秒前
2秒前
黄侯完成签到,获得积分20
2秒前
Ge发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助100
3秒前
lazyg5403完成签到,获得积分10
3秒前
SciGPT应助Aurora采纳,获得10
4秒前
Wanderer完成签到,获得积分10
4秒前
KILA发布了新的文献求助10
4秒前
001026Z完成签到,获得积分10
5秒前
彼得大帝完成签到,获得积分10
6秒前
hanchangcun发布了新的文献求助10
7秒前
7秒前
谨慎小翠完成签到,获得积分10
9秒前
gslscuer完成签到,获得积分10
10秒前
10秒前
11秒前
情怀应助liumx采纳,获得10
11秒前
乐乐应助nyj采纳,获得10
11秒前
柒柒完成签到,获得积分10
11秒前
凡人完成签到,获得积分10
11秒前
易寒完成签到,获得积分10
12秒前
Hello应助d.zhang采纳,获得10
12秒前
ss完成签到,获得积分10
13秒前
13秒前
win完成签到,获得积分10
13秒前
14秒前
14秒前
科研通AI2S应助Blessedone采纳,获得10
14秒前
Aurora发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
科研通AI2S应助瘦瘦的寒珊采纳,获得10
17秒前
迅速泽洋完成签到,获得积分10
18秒前
18秒前
随性i完成签到,获得积分10
18秒前
撑撑的烤红薯完成签到 ,获得积分10
18秒前
慢歌完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655