容错
控制理论(社会学)
执行机构
观察员(物理)
非线性系统
职位(财务)
控制工程
断层(地质)
控制(管理)
计算机科学
工程类
人工智能
分布式计算
地质学
财务
物理
经济
地震学
量子力学
作者
Wanbing Zhao,Hao Liu,Yan Wan
标识
DOI:10.1016/j.sysconle.2021.105063
摘要
This paper addresses the problem of data-driven fault-tolerant formation control for quadrotors with nonlinearities, unknown system parameters, and multiple actuator faults in the vehicle dynamics. A distributed fault-tolerant formation control law is developed including a distributed observer to generate the position reference for each vehicle, a fault-tolerant position control law to track the position reference, and a fault-tolerant attitude control law to regulate the attitude. Reinforcement learning approaches are implemented to update the optimal control weights in the fault-tolerant formation control law design. Stability of the proposed fault-tolerant formation control law is proven and simulation results of quadrotors under multiple actuator faults are provided to demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI